This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| irredn0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | irredn0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → 𝑋 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | ⊢ 𝐼 = ( Irred ‘ 𝑅 ) | |
| 2 | irredn0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 3 2 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 5 | 4 | anim1i | ⊢ ( ( 𝑅 ∈ Ring ∧ ¬ 0 ∈ ( Unit ‘ 𝑅 ) ) → ( 0 ∈ ( Base ‘ 𝑅 ) ∧ ¬ 0 ∈ ( Unit ‘ 𝑅 ) ) ) |
| 6 | eldif | ⊢ ( 0 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ↔ ( 0 ∈ ( Base ‘ 𝑅 ) ∧ ¬ 0 ∈ ( Unit ‘ 𝑅 ) ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝑅 ∈ Ring ∧ ¬ 0 ∈ ( Unit ‘ 𝑅 ) ) → 0 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ) |
| 8 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 9 | 3 8 2 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 10 | 4 9 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ ¬ 0 ∈ ( Unit ‘ 𝑅 ) ) → ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 12 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0 ( .r ‘ 𝑅 ) 𝑦 ) ) | |
| 13 | 12 | eqeq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ↔ ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) |
| 14 | oveq2 | ⊢ ( 𝑦 = 0 → ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0 ( .r ‘ 𝑅 ) 0 ) ) | |
| 15 | 14 | eqeq1d | ⊢ ( 𝑦 = 0 → ( ( 0 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ↔ ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) ) |
| 16 | 13 15 | rspc2ev | ⊢ ( ( 0 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∧ 0 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∧ ( 0 ( .r ‘ 𝑅 ) 0 ) = 0 ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) |
| 17 | 7 7 11 16 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ¬ 0 ∈ ( Unit ‘ 𝑅 ) ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) |
| 18 | 17 | ex | ⊢ ( 𝑅 ∈ Ring → ( ¬ 0 ∈ ( Unit ‘ 𝑅 ) → ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) |
| 19 | 18 | orrd | ⊢ ( 𝑅 ∈ Ring → ( 0 ∈ ( Unit ‘ 𝑅 ) ∨ ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) |
| 20 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 21 | eqid | ⊢ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) = ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) | |
| 22 | 3 20 1 21 8 | isnirred | ⊢ ( 0 ∈ ( Base ‘ 𝑅 ) → ( ¬ 0 ∈ 𝐼 ↔ ( 0 ∈ ( Unit ‘ 𝑅 ) ∨ ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) ) |
| 23 | 4 22 | syl | ⊢ ( 𝑅 ∈ Ring → ( ¬ 0 ∈ 𝐼 ↔ ( 0 ∈ ( Unit ‘ 𝑅 ) ∨ ∃ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ∃ 𝑦 ∈ ( ( Base ‘ 𝑅 ) ∖ ( Unit ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) ) |
| 24 | 19 23 | mpbird | ⊢ ( 𝑅 ∈ Ring → ¬ 0 ∈ 𝐼 ) |
| 25 | 24 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ¬ 0 ∈ 𝐼 ) |
| 26 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → 𝑋 ∈ 𝐼 ) | |
| 27 | eleq1 | ⊢ ( 𝑋 = 0 → ( 𝑋 ∈ 𝐼 ↔ 0 ∈ 𝐼 ) ) | |
| 28 | 26 27 | syl5ibcom | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( 𝑋 = 0 → 0 ∈ 𝐼 ) ) |
| 29 | 28 | necon3bd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → ( ¬ 0 ∈ 𝐼 → 𝑋 ≠ 0 ) ) |
| 30 | 25 29 | mpd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ) → 𝑋 ≠ 0 ) |