This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem jao1i

Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010)

Ref Expression
Hypothesis jao1i.1 ( 𝜓 → ( 𝜒𝜑 ) )
Assertion jao1i ( ( 𝜑𝜓 ) → ( 𝜒𝜑 ) )

Proof

Step Hyp Ref Expression
1 jao1i.1 ( 𝜓 → ( 𝜒𝜑 ) )
2 ax-1 ( 𝜑 → ( 𝜒𝜑 ) )
3 2 1 jaoi ( ( 𝜑𝜓 ) → ( 𝜒𝜑 ) )