This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of primes less than A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppisval | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) | |
| 2 | 1 | elin2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ℙ ) |
| 3 | prmuz2 | ⊢ ( 𝑥 ∈ ℙ → 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) |
| 5 | prmz | ⊢ ( 𝑥 ∈ ℙ → 𝑥 ∈ ℤ ) | |
| 6 | 2 5 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ℤ ) |
| 7 | flcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 9 | 1 | elin1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ( 0 [,] 𝐴 ) ) |
| 10 | 0re | ⊢ 0 ∈ ℝ | |
| 11 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝐴 ∈ ℝ ) | |
| 12 | elicc2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑥 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) |
| 14 | 9 13 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) |
| 15 | 14 | simp3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ≤ 𝐴 ) |
| 16 | flge | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ ( ⌊ ‘ 𝐴 ) ) ) | |
| 17 | 6 16 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 18 | 15 17 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ≤ ( ⌊ ‘ 𝐴 ) ) |
| 19 | eluz2 | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑥 ) ↔ ( 𝑥 ∈ ℤ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ 𝑥 ≤ ( ⌊ ‘ 𝐴 ) ) ) | |
| 20 | 6 8 18 19 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) |
| 21 | elfzuzb | ⊢ ( 𝑥 ∈ ( 2 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) ) | |
| 22 | 4 20 21 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ( 2 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 23 | 22 2 | elind | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 24 | 23 | ex | ⊢ ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) → 𝑥 ∈ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) ) |
| 25 | 24 | ssrdv | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 26 | 2z | ⊢ 2 ∈ ℤ | |
| 27 | fzval2 | ⊢ ( ( 2 ∈ ℤ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( 2 ... ( ⌊ ‘ 𝐴 ) ) = ( ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℤ ) ) | |
| 28 | 26 7 27 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( 2 ... ( ⌊ ‘ 𝐴 ) ) = ( ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℤ ) ) |
| 29 | inss1 | ⊢ ( ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℤ ) ⊆ ( 2 [,] ( ⌊ ‘ 𝐴 ) ) | |
| 30 | 10 | a1i | ⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
| 31 | id | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) | |
| 32 | 0le2 | ⊢ 0 ≤ 2 | |
| 33 | 32 | a1i | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ 2 ) |
| 34 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 35 | iccss | ⊢ ( ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 0 ≤ 2 ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) ) → ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ⊆ ( 0 [,] 𝐴 ) ) | |
| 36 | 30 31 33 34 35 | syl22anc | ⊢ ( 𝐴 ∈ ℝ → ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ⊆ ( 0 [,] 𝐴 ) ) |
| 37 | 29 36 | sstrid | ⊢ ( 𝐴 ∈ ℝ → ( ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℤ ) ⊆ ( 0 [,] 𝐴 ) ) |
| 38 | 28 37 | eqsstrd | ⊢ ( 𝐴 ∈ ℝ → ( 2 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 0 [,] 𝐴 ) ) |
| 39 | 38 | ssrind | ⊢ ( 𝐴 ∈ ℝ → ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ⊆ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
| 40 | 25 39 | eqssd | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |