This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of primes less than A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppisval | |- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ( ( 0 [,] A ) i^i Prime ) ) |
|
| 2 | 1 | elin2d | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. Prime ) |
| 3 | prmuz2 | |- ( x e. Prime -> x e. ( ZZ>= ` 2 ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ( ZZ>= ` 2 ) ) |
| 5 | prmz | |- ( x e. Prime -> x e. ZZ ) |
|
| 6 | 2 5 | syl | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ZZ ) |
| 7 | flcl | |- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
|
| 8 | 7 | adantr | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> ( |_ ` A ) e. ZZ ) |
| 9 | 1 | elin1d | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ( 0 [,] A ) ) |
| 10 | 0re | |- 0 e. RR |
|
| 11 | simpl | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> A e. RR ) |
|
| 12 | elicc2 | |- ( ( 0 e. RR /\ A e. RR ) -> ( x e. ( 0 [,] A ) <-> ( x e. RR /\ 0 <_ x /\ x <_ A ) ) ) |
|
| 13 | 10 11 12 | sylancr | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> ( x e. ( 0 [,] A ) <-> ( x e. RR /\ 0 <_ x /\ x <_ A ) ) ) |
| 14 | 9 13 | mpbid | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> ( x e. RR /\ 0 <_ x /\ x <_ A ) ) |
| 15 | 14 | simp3d | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x <_ A ) |
| 16 | flge | |- ( ( A e. RR /\ x e. ZZ ) -> ( x <_ A <-> x <_ ( |_ ` A ) ) ) |
|
| 17 | 6 16 | syldan | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> ( x <_ A <-> x <_ ( |_ ` A ) ) ) |
| 18 | 15 17 | mpbid | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x <_ ( |_ ` A ) ) |
| 19 | eluz2 | |- ( ( |_ ` A ) e. ( ZZ>= ` x ) <-> ( x e. ZZ /\ ( |_ ` A ) e. ZZ /\ x <_ ( |_ ` A ) ) ) |
|
| 20 | 6 8 18 19 | syl3anbrc | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> ( |_ ` A ) e. ( ZZ>= ` x ) ) |
| 21 | elfzuzb | |- ( x e. ( 2 ... ( |_ ` A ) ) <-> ( x e. ( ZZ>= ` 2 ) /\ ( |_ ` A ) e. ( ZZ>= ` x ) ) ) |
|
| 22 | 4 20 21 | sylanbrc | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ( 2 ... ( |_ ` A ) ) ) |
| 23 | 22 2 | elind | |- ( ( A e. RR /\ x e. ( ( 0 [,] A ) i^i Prime ) ) -> x e. ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 24 | 23 | ex | |- ( A e. RR -> ( x e. ( ( 0 [,] A ) i^i Prime ) -> x e. ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) ) |
| 25 | 24 | ssrdv | |- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) C_ ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 26 | 2z | |- 2 e. ZZ |
|
| 27 | fzval2 | |- ( ( 2 e. ZZ /\ ( |_ ` A ) e. ZZ ) -> ( 2 ... ( |_ ` A ) ) = ( ( 2 [,] ( |_ ` A ) ) i^i ZZ ) ) |
|
| 28 | 26 7 27 | sylancr | |- ( A e. RR -> ( 2 ... ( |_ ` A ) ) = ( ( 2 [,] ( |_ ` A ) ) i^i ZZ ) ) |
| 29 | inss1 | |- ( ( 2 [,] ( |_ ` A ) ) i^i ZZ ) C_ ( 2 [,] ( |_ ` A ) ) |
|
| 30 | 10 | a1i | |- ( A e. RR -> 0 e. RR ) |
| 31 | id | |- ( A e. RR -> A e. RR ) |
|
| 32 | 0le2 | |- 0 <_ 2 |
|
| 33 | 32 | a1i | |- ( A e. RR -> 0 <_ 2 ) |
| 34 | flle | |- ( A e. RR -> ( |_ ` A ) <_ A ) |
|
| 35 | iccss | |- ( ( ( 0 e. RR /\ A e. RR ) /\ ( 0 <_ 2 /\ ( |_ ` A ) <_ A ) ) -> ( 2 [,] ( |_ ` A ) ) C_ ( 0 [,] A ) ) |
|
| 36 | 30 31 33 34 35 | syl22anc | |- ( A e. RR -> ( 2 [,] ( |_ ` A ) ) C_ ( 0 [,] A ) ) |
| 37 | 29 36 | sstrid | |- ( A e. RR -> ( ( 2 [,] ( |_ ` A ) ) i^i ZZ ) C_ ( 0 [,] A ) ) |
| 38 | 28 37 | eqsstrd | |- ( A e. RR -> ( 2 ... ( |_ ` A ) ) C_ ( 0 [,] A ) ) |
| 39 | 38 | ssrind | |- ( A e. RR -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( ( 0 [,] A ) i^i Prime ) ) |
| 40 | 25 39 | eqssd | |- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |