This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1lmhm.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| pj1lmhm.s | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| pj1lmhm.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| pj1lmhm.p | ⊢ 𝑃 = ( proj1 ‘ 𝑊 ) | ||
| pj1lmhm.1 | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| pj1lmhm.2 | ⊢ ( 𝜑 → 𝑇 ∈ 𝐿 ) | ||
| pj1lmhm.3 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) | ||
| pj1lmhm.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| Assertion | pj1lmhm | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1lmhm.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 2 | pj1lmhm.s | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 3 | pj1lmhm.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | pj1lmhm.p | ⊢ 𝑃 = ( proj1 ‘ 𝑊 ) | |
| 5 | pj1lmhm.1 | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 6 | pj1lmhm.2 | ⊢ ( 𝜑 → 𝑇 ∈ 𝐿 ) | |
| 7 | pj1lmhm.3 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) | |
| 8 | pj1lmhm.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 10 | eqid | ⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) | |
| 11 | 1 | lsssssubg | ⊢ ( 𝑊 ∈ LMod → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 13 | 12 6 | sseldd | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 14 | 12 7 | sseldd | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 16 | 5 15 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 17 | 10 16 13 14 | ablcntzd | ⊢ ( 𝜑 → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) ) |
| 18 | 9 2 3 10 13 14 8 17 4 | pj1ghm | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝑊 ) ) |
| 19 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 20 | 19 | a1i | ⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) |
| 21 | 9 2 3 10 13 14 8 17 4 | pj1id | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑦 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) |
| 22 | 21 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑦 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 24 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑊 ∈ LMod ) |
| 25 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 26 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ∈ 𝐿 ) |
| 27 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 28 | 27 1 | lssss | ⊢ ( 𝑇 ∈ 𝐿 → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 29 | 26 28 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 30 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 31 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 32 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 33 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) ) |
| 34 | 9 2 3 10 30 31 32 33 4 | pj1f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
| 35 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) | |
| 36 | 34 35 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) |
| 37 | 29 36 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 38 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑈 ∈ 𝐿 ) |
| 39 | 27 1 | lssss | ⊢ ( 𝑈 ∈ 𝐿 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 40 | 38 39 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 41 | 9 2 3 10 30 31 32 33 4 | pj2f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ) |
| 42 | 41 35 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) |
| 43 | 40 42 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 44 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 45 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 46 | 27 9 19 44 45 | lmodvsdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 47 | 24 25 37 43 46 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ( +g ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 48 | 23 47 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 49 | 1 2 | lsmcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ∧ 𝑈 ∈ 𝐿 ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝐿 ) |
| 50 | 5 6 7 49 | syl3anc | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ∈ 𝐿 ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝐿 ) |
| 52 | 19 44 45 1 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ⊕ 𝑈 ) ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 53 | 24 51 25 35 52 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 54 | 19 44 45 1 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∈ 𝑇 ) |
| 55 | 24 26 25 36 54 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∈ 𝑇 ) |
| 56 | 19 44 45 1 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ∈ 𝑈 ) |
| 57 | 24 38 25 42 56 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ∈ 𝑈 ) |
| 58 | 9 2 3 10 30 31 32 33 4 53 55 57 | pj1eq | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) ) |
| 59 | 48 58 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 60 | 59 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
| 61 | 60 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
| 62 | 12 50 | sseldd | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 63 | eqid | ⊢ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) = ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) | |
| 64 | 63 | subgbas | ⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) → ( 𝑇 ⊕ 𝑈 ) = ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 65 | 62 64 | syl | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) = ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 66 | 65 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) ) |
| 67 | 66 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) ) |
| 68 | 61 67 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) |
| 69 | 63 1 | lsslmod | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ⊕ 𝑈 ) ∈ 𝐿 ) → ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ∈ LMod ) |
| 70 | 5 50 69 | syl2anc | ⊢ ( 𝜑 → ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ∈ LMod ) |
| 71 | ovex | ⊢ ( 𝑇 ⊕ 𝑈 ) ∈ V | |
| 72 | 63 19 | resssca | ⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ V → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 73 | 71 72 | ax-mp | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) |
| 74 | eqid | ⊢ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) = ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) | |
| 75 | 63 44 | ressvsca | ⊢ ( ( 𝑇 ⊕ 𝑈 ) ∈ V → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 76 | 71 75 | ax-mp | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) |
| 77 | 73 19 45 74 76 44 | islmhm3 | ⊢ ( ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ∈ LMod ∧ 𝑊 ∈ LMod ) → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ↔ ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝑊 ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) ) ) |
| 78 | 70 5 77 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ↔ ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) GrpHom 𝑊 ) ∧ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) ) ( ( 𝑇 𝑃 𝑈 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑦 ) ) ) ) ) |
| 79 | 18 20 68 78 | mpbir3and | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ) |