This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| lsmcl.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| Assertion | lsmcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lsmcl.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 3 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ Abel ) |
| 5 | 1 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 7 | 1 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 9 | 2 | lsmsubg2 | ⊢ ( ( 𝑊 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 10 | 4 6 8 9 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 11 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 12 | 11 2 | lsmelval | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑑 ∈ 𝑇 ∃ 𝑒 ∈ 𝑈 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ) |
| 13 | 6 8 12 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑑 ∈ 𝑇 ∃ 𝑒 ∈ 𝑈 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑑 ∈ 𝑇 ∃ 𝑒 ∈ 𝑈 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ) |
| 15 | simpll1 | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) | |
| 16 | simplr | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 17 | simpll2 | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑇 ∈ 𝑆 ) | |
| 18 | simprl | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑑 ∈ 𝑇 ) | |
| 19 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 20 | 19 1 | lssel | ⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑑 ∈ 𝑇 ) → 𝑑 ∈ ( Base ‘ 𝑊 ) ) |
| 21 | 17 18 20 | syl2anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑑 ∈ ( Base ‘ 𝑊 ) ) |
| 22 | simpll3 | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) | |
| 23 | simprr | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑒 ∈ 𝑈 ) | |
| 24 | 19 1 | lssel | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑒 ∈ 𝑈 ) → 𝑒 ∈ ( Base ‘ 𝑊 ) ) |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑒 ∈ ( Base ‘ 𝑊 ) ) |
| 26 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 27 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 28 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 29 | 19 11 26 27 28 | lmodvsdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑑 ∈ ( Base ‘ 𝑊 ) ∧ 𝑒 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ) |
| 30 | 15 16 21 25 29 | syl13anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ) |
| 31 | 15 17 5 | syl2anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 32 | 15 22 7 | syl2anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 33 | 26 27 28 1 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑑 ∈ 𝑇 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ∈ 𝑇 ) |
| 34 | 15 17 16 18 33 | syl22anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ∈ 𝑇 ) |
| 35 | 26 27 28 1 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ∈ 𝑈 ) |
| 36 | 15 22 16 23 35 | syl22anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ∈ 𝑈 ) |
| 37 | 11 2 | lsmelvali | ⊢ ( ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ∈ 𝑇 ∧ ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ∈ 𝑈 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 38 | 31 32 34 36 37 | syl22anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑑 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑒 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 39 | 30 38 | eqeltrd | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 40 | oveq2 | ⊢ ( 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) = ( 𝑎 ( ·𝑠 ‘ 𝑊 ) ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ) | |
| 41 | 40 | eleq1d | ⊢ ( 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑎 ( ·𝑠 ‘ 𝑊 ) ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 42 | 39 41 | syl5ibrcom | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑑 ∈ 𝑇 ∧ 𝑒 ∈ 𝑈 ) ) → ( 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 43 | 42 | rexlimdvva | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ∃ 𝑑 ∈ 𝑇 ∃ 𝑒 ∈ 𝑈 𝑢 = ( 𝑑 ( +g ‘ 𝑊 ) 𝑒 ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 44 | 14 43 | sylbid | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 45 | 44 | impr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 46 | 45 | ralrimivva | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 47 | 26 28 19 27 1 | islss4 | ⊢ ( 𝑊 ∈ LMod → ( ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ↔ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 48 | 47 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ↔ ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( 𝑇 ⊕ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 49 | 10 46 48 | mpbir2and | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ) |