This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1lmhm.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| pj1lmhm.s | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| pj1lmhm.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| pj1lmhm.p | ⊢ 𝑃 = ( proj1 ‘ 𝑊 ) | ||
| pj1lmhm.1 | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| pj1lmhm.2 | ⊢ ( 𝜑 → 𝑇 ∈ 𝐿 ) | ||
| pj1lmhm.3 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) | ||
| pj1lmhm.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| Assertion | pj1lmhm2 | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom ( 𝑊 ↾s 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1lmhm.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 2 | pj1lmhm.s | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 3 | pj1lmhm.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | pj1lmhm.p | ⊢ 𝑃 = ( proj1 ‘ 𝑊 ) | |
| 5 | pj1lmhm.1 | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 6 | pj1lmhm.2 | ⊢ ( 𝜑 → 𝑇 ∈ 𝐿 ) | |
| 7 | pj1lmhm.3 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) | |
| 8 | pj1lmhm.4 | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 9 | 1 2 3 4 5 6 7 8 | pj1lmhm | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ) |
| 10 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) | |
| 12 | 1 | lsssssubg | ⊢ ( 𝑊 ∈ LMod → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝐿 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 14 | 13 6 | sseldd | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 | 13 7 | sseldd | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 16 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 17 | 5 16 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 18 | 11 17 14 15 | ablcntzd | ⊢ ( 𝜑 → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ 𝑈 ) ) |
| 19 | 10 2 3 11 14 15 8 18 4 | pj1f | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
| 20 | 19 | frnd | ⊢ ( 𝜑 → ran ( 𝑇 𝑃 𝑈 ) ⊆ 𝑇 ) |
| 21 | eqid | ⊢ ( 𝑊 ↾s 𝑇 ) = ( 𝑊 ↾s 𝑇 ) | |
| 22 | 21 1 | reslmhm2b | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝐿 ∧ ran ( 𝑇 𝑃 𝑈 ) ⊆ 𝑇 ) → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ↔ ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom ( 𝑊 ↾s 𝑇 ) ) ) ) |
| 23 | 5 6 20 22 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom 𝑊 ) ↔ ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom ( 𝑊 ↾s 𝑇 ) ) ) ) |
| 24 | 9 23 | mpbid | ⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) ∈ ( ( 𝑊 ↾s ( 𝑇 ⊕ 𝑈 ) ) LMHom ( 𝑊 ↾s 𝑇 ) ) ) |