This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1lmhm.l | |- L = ( LSubSp ` W ) |
|
| pj1lmhm.s | |- .(+) = ( LSSum ` W ) |
||
| pj1lmhm.z | |- .0. = ( 0g ` W ) |
||
| pj1lmhm.p | |- P = ( proj1 ` W ) |
||
| pj1lmhm.1 | |- ( ph -> W e. LMod ) |
||
| pj1lmhm.2 | |- ( ph -> T e. L ) |
||
| pj1lmhm.3 | |- ( ph -> U e. L ) |
||
| pj1lmhm.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| Assertion | pj1lmhm | |- ( ph -> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1lmhm.l | |- L = ( LSubSp ` W ) |
|
| 2 | pj1lmhm.s | |- .(+) = ( LSSum ` W ) |
|
| 3 | pj1lmhm.z | |- .0. = ( 0g ` W ) |
|
| 4 | pj1lmhm.p | |- P = ( proj1 ` W ) |
|
| 5 | pj1lmhm.1 | |- ( ph -> W e. LMod ) |
|
| 6 | pj1lmhm.2 | |- ( ph -> T e. L ) |
|
| 7 | pj1lmhm.3 | |- ( ph -> U e. L ) |
|
| 8 | pj1lmhm.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 9 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 10 | eqid | |- ( Cntz ` W ) = ( Cntz ` W ) |
|
| 11 | 1 | lsssssubg | |- ( W e. LMod -> L C_ ( SubGrp ` W ) ) |
| 12 | 5 11 | syl | |- ( ph -> L C_ ( SubGrp ` W ) ) |
| 13 | 12 6 | sseldd | |- ( ph -> T e. ( SubGrp ` W ) ) |
| 14 | 12 7 | sseldd | |- ( ph -> U e. ( SubGrp ` W ) ) |
| 15 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 16 | 5 15 | syl | |- ( ph -> W e. Abel ) |
| 17 | 10 16 13 14 | ablcntzd | |- ( ph -> T C_ ( ( Cntz ` W ) ` U ) ) |
| 18 | 9 2 3 10 13 14 8 17 4 | pj1ghm | |- ( ph -> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) GrpHom W ) ) |
| 19 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 20 | 19 | a1i | |- ( ph -> ( Scalar ` W ) = ( Scalar ` W ) ) |
| 21 | 9 2 3 10 13 14 8 17 4 | pj1id | |- ( ( ph /\ y e. ( T .(+) U ) ) -> y = ( ( ( T P U ) ` y ) ( +g ` W ) ( ( U P T ) ` y ) ) ) |
| 22 | 21 | adantrl | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> y = ( ( ( T P U ) ` y ) ( +g ` W ) ( ( U P T ) ` y ) ) ) |
| 23 | 22 | oveq2d | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) y ) = ( x ( .s ` W ) ( ( ( T P U ) ` y ) ( +g ` W ) ( ( U P T ) ` y ) ) ) ) |
| 24 | 5 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> W e. LMod ) |
| 25 | simprl | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
|
| 26 | 6 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> T e. L ) |
| 27 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 28 | 27 1 | lssss | |- ( T e. L -> T C_ ( Base ` W ) ) |
| 29 | 26 28 | syl | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> T C_ ( Base ` W ) ) |
| 30 | 13 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> T e. ( SubGrp ` W ) ) |
| 31 | 14 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> U e. ( SubGrp ` W ) ) |
| 32 | 8 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( T i^i U ) = { .0. } ) |
| 33 | 17 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> T C_ ( ( Cntz ` W ) ` U ) ) |
| 34 | 9 2 3 10 30 31 32 33 4 | pj1f | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( T P U ) : ( T .(+) U ) --> T ) |
| 35 | simprr | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> y e. ( T .(+) U ) ) |
|
| 36 | 34 35 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` y ) e. T ) |
| 37 | 29 36 | sseldd | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` y ) e. ( Base ` W ) ) |
| 38 | 7 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> U e. L ) |
| 39 | 27 1 | lssss | |- ( U e. L -> U C_ ( Base ` W ) ) |
| 40 | 38 39 | syl | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> U C_ ( Base ` W ) ) |
| 41 | 9 2 3 10 30 31 32 33 4 | pj2f | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( U P T ) : ( T .(+) U ) --> U ) |
| 42 | 41 35 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` y ) e. U ) |
| 43 | 40 42 | sseldd | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` y ) e. ( Base ` W ) ) |
| 44 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 45 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 46 | 27 9 19 44 45 | lmodvsdi | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ ( ( T P U ) ` y ) e. ( Base ` W ) /\ ( ( U P T ) ` y ) e. ( Base ` W ) ) ) -> ( x ( .s ` W ) ( ( ( T P U ) ` y ) ( +g ` W ) ( ( U P T ) ` y ) ) ) = ( ( x ( .s ` W ) ( ( T P U ) ` y ) ) ( +g ` W ) ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) ) |
| 47 | 24 25 37 43 46 | syl13anc | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) ( ( ( T P U ) ` y ) ( +g ` W ) ( ( U P T ) ` y ) ) ) = ( ( x ( .s ` W ) ( ( T P U ) ` y ) ) ( +g ` W ) ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) ) |
| 48 | 23 47 | eqtrd | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) y ) = ( ( x ( .s ` W ) ( ( T P U ) ` y ) ) ( +g ` W ) ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) ) |
| 49 | 1 2 | lsmcl | |- ( ( W e. LMod /\ T e. L /\ U e. L ) -> ( T .(+) U ) e. L ) |
| 50 | 5 6 7 49 | syl3anc | |- ( ph -> ( T .(+) U ) e. L ) |
| 51 | 50 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( T .(+) U ) e. L ) |
| 52 | 19 44 45 1 | lssvscl | |- ( ( ( W e. LMod /\ ( T .(+) U ) e. L ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) y ) e. ( T .(+) U ) ) |
| 53 | 24 51 25 35 52 | syl22anc | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) y ) e. ( T .(+) U ) ) |
| 54 | 19 44 45 1 | lssvscl | |- ( ( ( W e. LMod /\ T e. L ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ ( ( T P U ) ` y ) e. T ) ) -> ( x ( .s ` W ) ( ( T P U ) ` y ) ) e. T ) |
| 55 | 24 26 25 36 54 | syl22anc | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) ( ( T P U ) ` y ) ) e. T ) |
| 56 | 19 44 45 1 | lssvscl | |- ( ( ( W e. LMod /\ U e. L ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ ( ( U P T ) ` y ) e. U ) ) -> ( x ( .s ` W ) ( ( U P T ) ` y ) ) e. U ) |
| 57 | 24 38 25 42 56 | syl22anc | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( x ( .s ` W ) ( ( U P T ) ` y ) ) e. U ) |
| 58 | 9 2 3 10 30 31 32 33 4 53 55 57 | pj1eq | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( x ( .s ` W ) y ) = ( ( x ( .s ` W ) ( ( T P U ) ` y ) ) ( +g ` W ) ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) <-> ( ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) /\ ( ( U P T ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) ) ) |
| 59 | 48 58 | mpbid | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) /\ ( ( U P T ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( U P T ) ` y ) ) ) ) |
| 60 | 59 | simpld | |- ( ( ph /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) |
| 61 | 60 | ralrimivva | |- ( ph -> A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( T .(+) U ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) |
| 62 | 12 50 | sseldd | |- ( ph -> ( T .(+) U ) e. ( SubGrp ` W ) ) |
| 63 | eqid | |- ( W |`s ( T .(+) U ) ) = ( W |`s ( T .(+) U ) ) |
|
| 64 | 63 | subgbas | |- ( ( T .(+) U ) e. ( SubGrp ` W ) -> ( T .(+) U ) = ( Base ` ( W |`s ( T .(+) U ) ) ) ) |
| 65 | 62 64 | syl | |- ( ph -> ( T .(+) U ) = ( Base ` ( W |`s ( T .(+) U ) ) ) ) |
| 66 | 65 | raleqdv | |- ( ph -> ( A. y e. ( T .(+) U ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) <-> A. y e. ( Base ` ( W |`s ( T .(+) U ) ) ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) ) |
| 67 | 66 | ralbidv | |- ( ph -> ( A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( T .(+) U ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) <-> A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` ( W |`s ( T .(+) U ) ) ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) ) |
| 68 | 61 67 | mpbid | |- ( ph -> A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` ( W |`s ( T .(+) U ) ) ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) |
| 69 | 63 1 | lsslmod | |- ( ( W e. LMod /\ ( T .(+) U ) e. L ) -> ( W |`s ( T .(+) U ) ) e. LMod ) |
| 70 | 5 50 69 | syl2anc | |- ( ph -> ( W |`s ( T .(+) U ) ) e. LMod ) |
| 71 | ovex | |- ( T .(+) U ) e. _V |
|
| 72 | 63 19 | resssca | |- ( ( T .(+) U ) e. _V -> ( Scalar ` W ) = ( Scalar ` ( W |`s ( T .(+) U ) ) ) ) |
| 73 | 71 72 | ax-mp | |- ( Scalar ` W ) = ( Scalar ` ( W |`s ( T .(+) U ) ) ) |
| 74 | eqid | |- ( Base ` ( W |`s ( T .(+) U ) ) ) = ( Base ` ( W |`s ( T .(+) U ) ) ) |
|
| 75 | 63 44 | ressvsca | |- ( ( T .(+) U ) e. _V -> ( .s ` W ) = ( .s ` ( W |`s ( T .(+) U ) ) ) ) |
| 76 | 71 75 | ax-mp | |- ( .s ` W ) = ( .s ` ( W |`s ( T .(+) U ) ) ) |
| 77 | 73 19 45 74 76 44 | islmhm3 | |- ( ( ( W |`s ( T .(+) U ) ) e. LMod /\ W e. LMod ) -> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) <-> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) GrpHom W ) /\ ( Scalar ` W ) = ( Scalar ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` ( W |`s ( T .(+) U ) ) ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) ) ) |
| 78 | 70 5 77 | syl2anc | |- ( ph -> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) <-> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) GrpHom W ) /\ ( Scalar ` W ) = ( Scalar ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. ( Base ` ( W |`s ( T .(+) U ) ) ) ( ( T P U ) ` ( x ( .s ` W ) y ) ) = ( x ( .s ` W ) ( ( T P U ) ` y ) ) ) ) ) |
| 79 | 18 20 68 78 | mpbir3and | |- ( ph -> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) ) |