This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a module homomorphism, similar to ismhm . (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmhm.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | |
| islmhm.l | ⊢ 𝐿 = ( Scalar ‘ 𝑇 ) | ||
| islmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | ||
| islmhm.e | ⊢ 𝐸 = ( Base ‘ 𝑆 ) | ||
| islmhm.m | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | ||
| islmhm.n | ⊢ × = ( ·𝑠 ‘ 𝑇 ) | ||
| Assertion | islmhm3 | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhm.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | |
| 2 | islmhm.l | ⊢ 𝐿 = ( Scalar ‘ 𝑇 ) | |
| 3 | islmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 4 | islmhm.e | ⊢ 𝐸 = ( Base ‘ 𝑆 ) | |
| 5 | islmhm.m | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | |
| 6 | islmhm.n | ⊢ × = ( ·𝑠 ‘ 𝑇 ) | |
| 7 | 1 2 3 4 5 6 | islmhm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 8 | 7 | baib | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |