This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014) (Proof shortened by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pczpre.1 | ⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) | |
| Assertion | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pczpre.1 | ⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) | |
| 2 | zq | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℚ ) | |
| 3 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) | |
| 4 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) | |
| 5 | 3 4 | pcval | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 6 | 2 5 | sylanr1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 7 | simprl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑁 ∈ ℤ ) | |
| 8 | 7 | zcnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑁 ∈ ℂ ) |
| 9 | 8 | div1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑁 / 1 ) = 𝑁 ) |
| 10 | 9 | eqcomd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑁 = ( 𝑁 / 1 ) ) |
| 11 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 12 | eqid | ⊢ 1 = 1 | |
| 13 | eqid | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } | |
| 14 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) | |
| 15 | 13 14 | pcpre1 | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 1 = 1 ) → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) = 0 ) |
| 16 | 11 12 15 | sylancl | ⊢ ( 𝑃 ∈ ℙ → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) = 0 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) = 0 ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) = ( 𝑆 − 0 ) ) |
| 19 | eqid | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| 20 | 19 1 | pcprecl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| 21 | 11 20 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| 22 | 21 | simpld | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 ∈ ℕ0 ) |
| 23 | 22 | nn0cnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 ∈ ℂ ) |
| 24 | 23 | subid1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 − 0 ) = 𝑆 ) |
| 25 | 18 24 | eqtr2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) ) |
| 26 | 1nn | ⊢ 1 ∈ ℕ | |
| 27 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 / 𝑦 ) = ( 𝑁 / 𝑦 ) ) | |
| 28 | 27 | eqeq2d | ⊢ ( 𝑥 = 𝑁 → ( 𝑁 = ( 𝑥 / 𝑦 ) ↔ 𝑁 = ( 𝑁 / 𝑦 ) ) ) |
| 29 | breq2 | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 ) ) | |
| 30 | 29 | rabbidv | ⊢ ( 𝑥 = 𝑁 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } ) |
| 31 | 30 | supeq1d | ⊢ ( 𝑥 = 𝑁 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) ) |
| 32 | 31 1 | eqtr4di | ⊢ ( 𝑥 = 𝑁 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = 𝑆 ) |
| 33 | 32 | oveq1d | ⊢ ( 𝑥 = 𝑁 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) |
| 34 | 33 | eqeq2d | ⊢ ( 𝑥 = 𝑁 → ( 𝑆 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ 𝑆 = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 35 | 28 34 | anbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑆 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( 𝑁 = ( 𝑁 / 𝑦 ) ∧ 𝑆 = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 36 | oveq2 | ⊢ ( 𝑦 = 1 → ( 𝑁 / 𝑦 ) = ( 𝑁 / 1 ) ) | |
| 37 | 36 | eqeq2d | ⊢ ( 𝑦 = 1 → ( 𝑁 = ( 𝑁 / 𝑦 ) ↔ 𝑁 = ( 𝑁 / 1 ) ) ) |
| 38 | breq2 | ⊢ ( 𝑦 = 1 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 1 ) ) | |
| 39 | 38 | rabbidv | ⊢ ( 𝑦 = 1 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } ) |
| 40 | 39 | supeq1d | ⊢ ( 𝑦 = 1 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) |
| 41 | 40 | oveq2d | ⊢ ( 𝑦 = 1 → ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) ) |
| 42 | 41 | eqeq2d | ⊢ ( 𝑦 = 1 → ( 𝑆 = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ 𝑆 = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) ) ) |
| 43 | 37 42 | anbi12d | ⊢ ( 𝑦 = 1 → ( ( 𝑁 = ( 𝑁 / 𝑦 ) ∧ 𝑆 = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( 𝑁 = ( 𝑁 / 1 ) ∧ 𝑆 = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) ) ) ) |
| 44 | 35 43 | rspc2ev | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 ∈ ℕ ∧ ( 𝑁 = ( 𝑁 / 1 ) ∧ 𝑆 = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑆 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 45 | 26 44 | mp3an2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 = ( 𝑁 / 1 ) ∧ 𝑆 = ( 𝑆 − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑆 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 46 | 7 10 25 45 | syl12anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑆 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 47 | ltso | ⊢ < Or ℝ | |
| 48 | 47 | supex | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } , ℝ , < ) ∈ V |
| 49 | 1 48 | eqeltri | ⊢ 𝑆 ∈ V |
| 50 | 3 4 | pceu | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 51 | 2 50 | sylanr1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 52 | eqeq1 | ⊢ ( 𝑧 = 𝑆 → ( 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ 𝑆 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) | |
| 53 | 52 | anbi2d | ⊢ ( 𝑧 = 𝑆 → ( ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑆 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 54 | 53 | 2rexbidv | ⊢ ( 𝑧 = 𝑆 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑆 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 55 | 54 | iota2 | ⊢ ( ( 𝑆 ∈ V ∧ ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑆 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = 𝑆 ) ) |
| 56 | 49 51 55 | sylancr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑆 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = 𝑆 ) ) |
| 57 | 46 56 | mpbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = 𝑆 ) |
| 58 | 6 57 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = 𝑆 ) |