This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcval.1 | ⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) | |
| pcval.2 | ⊢ 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) | ||
| Assertion | pcval | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcval.1 | ⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) | |
| 2 | pcval.2 | ⊢ 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) | |
| 3 | simpr | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → 𝑟 = 𝑁 ) | |
| 4 | 3 | eqeq1d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → ( 𝑟 = 0 ↔ 𝑁 = 0 ) ) |
| 5 | eqeq1 | ⊢ ( 𝑟 = 𝑁 → ( 𝑟 = ( 𝑥 / 𝑦 ) ↔ 𝑁 = ( 𝑥 / 𝑦 ) ) ) | |
| 6 | oveq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑛 ) ) | |
| 7 | 6 | breq1d | ⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 ) ) |
| 8 | 7 | rabbidv | ⊢ ( 𝑝 = 𝑃 → { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } ) |
| 9 | 8 | supeq1d | ⊢ ( 𝑝 = 𝑃 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) ) |
| 10 | 9 1 | eqtr4di | ⊢ ( 𝑝 = 𝑃 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = 𝑆 ) |
| 11 | 6 | breq1d | ⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 ) ) |
| 12 | 11 | rabbidv | ⊢ ( 𝑝 = 𝑃 → { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } ) |
| 13 | 12 | supeq1d | ⊢ ( 𝑝 = 𝑃 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) |
| 14 | 13 2 | eqtr4di | ⊢ ( 𝑝 = 𝑃 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = 𝑇 ) |
| 15 | 10 14 | oveq12d | ⊢ ( 𝑝 = 𝑃 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) = ( 𝑆 − 𝑇 ) ) |
| 16 | 15 | eqeq2d | ⊢ ( 𝑝 = 𝑃 → ( 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
| 17 | 5 16 | bi2anan9r | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → ( ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |
| 18 | 17 | 2rexbidv | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |
| 19 | 18 | iotabidv | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |
| 20 | 4 19 | ifbieq2d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑟 = 𝑁 ) → if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) = if ( 𝑁 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) ) |
| 21 | df-pc | ⊢ pCnt = ( 𝑝 ∈ ℙ , 𝑟 ∈ ℚ ↦ if ( 𝑟 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑟 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) ) | |
| 22 | pnfex | ⊢ +∞ ∈ V | |
| 23 | iotaex | ⊢ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∈ V | |
| 24 | 22 23 | ifex | ⊢ if ( 𝑁 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) ∈ V |
| 25 | 20 21 24 | ovmpoa | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑃 pCnt 𝑁 ) = if ( 𝑁 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) ) |
| 26 | ifnefalse | ⊢ ( 𝑁 ≠ 0 → if ( 𝑁 = 0 , +∞ , ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) | |
| 27 | 25 26 | sylan9eq | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ ) ∧ 𝑁 ≠ 0 ) → ( 𝑃 pCnt 𝑁 ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |
| 28 | 27 | anasss | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ) |