This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pclem.1 | ⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| pclem.2 | ⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) | ||
| Assertion | pcpre1 | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | ⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| 2 | pclem.2 | ⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) | |
| 3 | 1z | ⊢ 1 ∈ ℤ | |
| 4 | eleq1 | ⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℤ ↔ 1 ∈ ℤ ) ) | |
| 5 | 3 4 | mpbiri | ⊢ ( 𝑁 = 1 → 𝑁 ∈ ℤ ) |
| 6 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 7 | neeq1 | ⊢ ( 𝑁 = 1 → ( 𝑁 ≠ 0 ↔ 1 ≠ 0 ) ) | |
| 8 | 6 7 | mpbiri | ⊢ ( 𝑁 = 1 → 𝑁 ≠ 0 ) |
| 9 | 5 8 | jca | ⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
| 10 | 1 2 | pcprecl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| 11 | 9 10 | sylan2 | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| 12 | 11 | simprd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) |
| 13 | simpr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑁 = 1 ) | |
| 14 | 12 13 | breqtrd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ∥ 1 ) |
| 15 | eluz2nn | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑃 ∈ ℕ ) |
| 17 | 11 | simpld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ∈ ℕ0 ) |
| 18 | 16 17 | nnexpcld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ∈ ℕ ) |
| 19 | 18 | nnzd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ∈ ℤ ) |
| 20 | 1nn | ⊢ 1 ∈ ℕ | |
| 21 | dvdsle | ⊢ ( ( ( 𝑃 ↑ 𝑆 ) ∈ ℤ ∧ 1 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑆 ) ∥ 1 → ( 𝑃 ↑ 𝑆 ) ≤ 1 ) ) | |
| 22 | 19 20 21 | sylancl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( ( 𝑃 ↑ 𝑆 ) ∥ 1 → ( 𝑃 ↑ 𝑆 ) ≤ 1 ) ) |
| 23 | 14 22 | mpd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ≤ 1 ) |
| 24 | 16 | nncnd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑃 ∈ ℂ ) |
| 25 | 24 | exp0d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 0 ) = 1 ) |
| 26 | 23 25 | breqtrrd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑃 ↑ 𝑆 ) ≤ ( 𝑃 ↑ 0 ) ) |
| 27 | 16 | nnred | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑃 ∈ ℝ ) |
| 28 | 17 | nn0zd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ∈ ℤ ) |
| 29 | 0zd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 0 ∈ ℤ ) | |
| 30 | eluz2gt1 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) | |
| 31 | 30 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 1 < 𝑃 ) |
| 32 | 27 28 29 31 | leexp2d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑆 ≤ 0 ↔ ( 𝑃 ↑ 𝑆 ) ≤ ( 𝑃 ↑ 0 ) ) ) |
| 33 | 26 32 | mpbird | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ≤ 0 ) |
| 34 | 10 | simpld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 ∈ ℕ0 ) |
| 35 | 9 34 | sylan2 | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 ∈ ℕ0 ) |
| 36 | nn0le0eq0 | ⊢ ( 𝑆 ∈ ℕ0 → ( 𝑆 ≤ 0 ↔ 𝑆 = 0 ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → ( 𝑆 ≤ 0 ↔ 𝑆 = 0 ) ) |
| 38 | 33 37 | mpbid | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 = 1 ) → 𝑆 = 0 ) |