This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unique element such that ph . (Contributed by Jeff Madsen, 1-Jun-2011) (Revised by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iota2.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | iota2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃! 𝑥 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 𝜑 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) → 𝐴 ∈ V ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) → ∃! 𝑥 𝜑 ) | |
| 5 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝐴 ∈ V | |
| 7 | nfeu1 | ⊢ Ⅎ 𝑥 ∃! 𝑥 𝜑 | |
| 8 | 6 7 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) |
| 9 | nfvd | ⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) → Ⅎ 𝑥 𝜓 ) | |
| 10 | nfcvd | ⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) → Ⅎ 𝑥 𝐴 ) | |
| 11 | 3 4 5 8 9 10 | iota2df | ⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 𝜑 ) = 𝐴 ) ) |
| 12 | 2 11 | sylan | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∃! 𝑥 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 𝜑 ) = 𝐴 ) ) |