This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014) (Proof shortened by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pczpre.1 | |- S = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
|
| Assertion | pczpre | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pczpre.1 | |- S = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
|
| 2 | zq | |- ( N e. ZZ -> N e. QQ ) |
|
| 3 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
|
| 4 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
|
| 5 | 3 4 | pcval | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 6 | 2 5 | sylanr1 | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 7 | simprl | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. ZZ ) |
|
| 8 | 7 | zcnd | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. CC ) |
| 9 | 8 | div1d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( N / 1 ) = N ) |
| 10 | 9 | eqcomd | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> N = ( N / 1 ) ) |
| 11 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 12 | eqid | |- 1 = 1 |
|
| 13 | eqid | |- { n e. NN0 | ( P ^ n ) || 1 } = { n e. NN0 | ( P ^ n ) || 1 } |
|
| 14 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) |
|
| 15 | 13 14 | pcpre1 | |- ( ( P e. ( ZZ>= ` 2 ) /\ 1 = 1 ) -> sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = 0 ) |
| 16 | 11 12 15 | sylancl | |- ( P e. Prime -> sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = 0 ) |
| 17 | 16 | adantr | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = 0 ) |
| 18 | 17 | oveq2d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) = ( S - 0 ) ) |
| 19 | eqid | |- { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } |
|
| 20 | 19 1 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 21 | 11 20 | sylan | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 22 | 21 | simpld | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. NN0 ) |
| 23 | 22 | nn0cnd | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. CC ) |
| 24 | 23 | subid1d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S - 0 ) = S ) |
| 25 | 18 24 | eqtr2d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> S = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) |
| 26 | 1nn | |- 1 e. NN |
|
| 27 | oveq1 | |- ( x = N -> ( x / y ) = ( N / y ) ) |
|
| 28 | 27 | eqeq2d | |- ( x = N -> ( N = ( x / y ) <-> N = ( N / y ) ) ) |
| 29 | breq2 | |- ( x = N -> ( ( P ^ n ) || x <-> ( P ^ n ) || N ) ) |
|
| 30 | 29 | rabbidv | |- ( x = N -> { n e. NN0 | ( P ^ n ) || x } = { n e. NN0 | ( P ^ n ) || N } ) |
| 31 | 30 | supeq1d | |- ( x = N -> sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) |
| 32 | 31 1 | eqtr4di | |- ( x = N -> sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = S ) |
| 33 | 32 | oveq1d | |- ( x = N -> ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) = ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) |
| 34 | 33 | eqeq2d | |- ( x = N -> ( S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> S = ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 35 | 28 34 | anbi12d | |- ( x = N -> ( ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( N = ( N / y ) /\ S = ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 36 | oveq2 | |- ( y = 1 -> ( N / y ) = ( N / 1 ) ) |
|
| 37 | 36 | eqeq2d | |- ( y = 1 -> ( N = ( N / y ) <-> N = ( N / 1 ) ) ) |
| 38 | breq2 | |- ( y = 1 -> ( ( P ^ n ) || y <-> ( P ^ n ) || 1 ) ) |
|
| 39 | 38 | rabbidv | |- ( y = 1 -> { n e. NN0 | ( P ^ n ) || y } = { n e. NN0 | ( P ^ n ) || 1 } ) |
| 40 | 39 | supeq1d | |- ( y = 1 -> sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) |
| 41 | 40 | oveq2d | |- ( y = 1 -> ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) |
| 42 | 41 | eqeq2d | |- ( y = 1 -> ( S = ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> S = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) ) |
| 43 | 37 42 | anbi12d | |- ( y = 1 -> ( ( N = ( N / y ) /\ S = ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( N = ( N / 1 ) /\ S = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) ) ) |
| 44 | 35 43 | rspc2ev | |- ( ( N e. ZZ /\ 1 e. NN /\ ( N = ( N / 1 ) /\ S = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) ) -> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 45 | 26 44 | mp3an2 | |- ( ( N e. ZZ /\ ( N = ( N / 1 ) /\ S = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) ) -> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 46 | 7 10 25 45 | syl12anc | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 47 | ltso | |- < Or RR |
|
| 48 | 47 | supex | |- sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) e. _V |
| 49 | 1 48 | eqeltri | |- S e. _V |
| 50 | 3 4 | pceu | |- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 51 | 2 50 | sylanr1 | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 52 | eqeq1 | |- ( z = S -> ( z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
|
| 53 | 52 | anbi2d | |- ( z = S -> ( ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 54 | 53 | 2rexbidv | |- ( z = S -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 55 | 54 | iota2 | |- ( ( S e. _V /\ E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = S ) ) |
| 56 | 49 51 55 | sylancr | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = S ) ) |
| 57 | 46 56 | mpbid | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = S ) |
| 58 | 6 57 | eqtrd | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = S ) |