This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcval.1 | ⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) | |
| pcval.2 | ⊢ 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) | ||
| Assertion | pceu | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcval.1 | ⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) | |
| 2 | pcval.2 | ⊢ 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) | |
| 3 | simprl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → 𝑁 ∈ ℚ ) | |
| 4 | elq | ⊢ ( 𝑁 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ) |
| 6 | ovex | ⊢ ( 𝑆 − 𝑇 ) ∈ V | |
| 7 | biidd | ⊢ ( 𝑧 = ( 𝑆 − 𝑇 ) → ( 𝑁 = ( 𝑥 / 𝑦 ) ↔ 𝑁 = ( 𝑥 / 𝑦 ) ) ) | |
| 8 | 6 7 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝑆 − 𝑇 ) ∧ 𝑁 = ( 𝑥 / 𝑦 ) ) ↔ 𝑁 = ( 𝑥 / 𝑦 ) ) |
| 9 | exancom | ⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝑆 − 𝑇 ) ∧ 𝑁 = ( 𝑥 / 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) | |
| 10 | 8 9 | bitr3i | ⊢ ( 𝑁 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑧 ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
| 11 | 10 | rexbii | ⊢ ( ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
| 12 | rexcom4 | ⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑧 ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑧 ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
| 14 | 13 | rexbii | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
| 15 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
| 17 | 5 16 | sylib | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
| 18 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) | |
| 19 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) | |
| 20 | simp11l | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑃 ∈ ℙ ) | |
| 21 | simp11r | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑁 ≠ 0 ) | |
| 22 | simp12 | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) | |
| 23 | simp13l | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑁 = ( 𝑥 / 𝑦 ) ) | |
| 24 | simp2 | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ) | |
| 25 | simp3l | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑁 = ( 𝑠 / 𝑡 ) ) | |
| 26 | 1 2 18 19 20 21 22 23 24 25 | pceulem | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → ( 𝑆 − 𝑇 ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) |
| 27 | simp13r | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑧 = ( 𝑆 − 𝑇 ) ) | |
| 28 | simp3r | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) | |
| 29 | 26 27 28 | 3eqtr4d | ⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑧 = 𝑤 ) |
| 30 | 29 | 3exp | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) → ( ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) → ( ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) → 𝑧 = 𝑤 ) ) ) |
| 31 | 30 | rexlimdvv | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) → ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) → 𝑧 = 𝑤 ) ) |
| 32 | 31 | 3exp | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) → ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) → 𝑧 = 𝑤 ) ) ) ) |
| 33 | 32 | adantrl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) → ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) → 𝑧 = 𝑤 ) ) ) ) |
| 34 | 33 | rexlimdvv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) → ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) → 𝑧 = 𝑤 ) ) ) |
| 35 | 34 | impd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ∧ ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑧 = 𝑤 ) ) |
| 36 | 35 | alrimivv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∀ 𝑧 ∀ 𝑤 ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ∧ ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑧 = 𝑤 ) ) |
| 37 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑆 − 𝑇 ) ↔ 𝑤 = ( 𝑆 − 𝑇 ) ) ) | |
| 38 | 37 | anbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ) ) |
| 39 | 38 | 2rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ) ) |
| 40 | oveq1 | ⊢ ( 𝑥 = 𝑠 → ( 𝑥 / 𝑦 ) = ( 𝑠 / 𝑦 ) ) | |
| 41 | 40 | eqeq2d | ⊢ ( 𝑥 = 𝑠 → ( 𝑁 = ( 𝑥 / 𝑦 ) ↔ 𝑁 = ( 𝑠 / 𝑦 ) ) ) |
| 42 | breq2 | ⊢ ( 𝑥 = 𝑠 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 ) ) | |
| 43 | 42 | rabbidv | ⊢ ( 𝑥 = 𝑠 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } ) |
| 44 | 43 | supeq1d | ⊢ ( 𝑥 = 𝑠 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) ) |
| 45 | 1 44 | eqtrid | ⊢ ( 𝑥 = 𝑠 → 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) ) |
| 46 | 45 | oveq1d | ⊢ ( 𝑥 = 𝑠 → ( 𝑆 − 𝑇 ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) |
| 47 | 46 | eqeq2d | ⊢ ( 𝑥 = 𝑠 → ( 𝑤 = ( 𝑆 − 𝑇 ) ↔ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) ) |
| 48 | 41 47 | anbi12d | ⊢ ( 𝑥 = 𝑠 → ( ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ↔ ( 𝑁 = ( 𝑠 / 𝑦 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) ) ) |
| 49 | 48 | rexbidv | ⊢ ( 𝑥 = 𝑠 → ( ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑦 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) ) ) |
| 50 | oveq2 | ⊢ ( 𝑦 = 𝑡 → ( 𝑠 / 𝑦 ) = ( 𝑠 / 𝑡 ) ) | |
| 51 | 50 | eqeq2d | ⊢ ( 𝑦 = 𝑡 → ( 𝑁 = ( 𝑠 / 𝑦 ) ↔ 𝑁 = ( 𝑠 / 𝑡 ) ) ) |
| 52 | breq2 | ⊢ ( 𝑦 = 𝑡 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 ) ) | |
| 53 | 52 | rabbidv | ⊢ ( 𝑦 = 𝑡 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } ) |
| 54 | 53 | supeq1d | ⊢ ( 𝑦 = 𝑡 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) |
| 55 | 2 54 | eqtrid | ⊢ ( 𝑦 = 𝑡 → 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) |
| 56 | 55 | oveq2d | ⊢ ( 𝑦 = 𝑡 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) |
| 57 | 56 | eqeq2d | ⊢ ( 𝑦 = 𝑡 → ( 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ↔ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) |
| 58 | 51 57 | anbi12d | ⊢ ( 𝑦 = 𝑡 → ( ( 𝑁 = ( 𝑠 / 𝑦 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) ↔ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) ) |
| 59 | 58 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑦 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) ↔ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) |
| 60 | 49 59 | bitrdi | ⊢ ( 𝑥 = 𝑠 → ( ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) ) |
| 61 | 60 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) |
| 62 | 39 61 | bitrdi | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) ) |
| 63 | 62 | eu4 | ⊢ ( ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ( ∃ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ∧ ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑧 = 𝑤 ) ) ) |
| 64 | 17 36 63 | sylanbrc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |