This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pclem.1 | ⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| pclem.2 | ⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) | ||
| Assertion | pcprecl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclem.1 | ⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } | |
| 2 | pclem.2 | ⊢ 𝑆 = sup ( 𝐴 , ℝ , < ) | |
| 3 | 1 | pclem | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) ) |
| 4 | suprzcl2 | ⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℤ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| 6 | 2 5 | eqeltrid | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑆 ∈ 𝐴 ) |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝑆 → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ 𝑆 ) ) | |
| 8 | 7 | breq1d | ⊢ ( 𝑥 = 𝑆 → ( ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| 9 | oveq2 | ⊢ ( 𝑛 = 𝑥 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑥 ) ) | |
| 10 | 9 | breq1d | ⊢ ( 𝑛 = 𝑥 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 ) ) |
| 11 | 10 | cbvrabv | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } = { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } |
| 12 | 1 11 | eqtri | ⊢ 𝐴 = { 𝑥 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑥 ) ∥ 𝑁 } |
| 13 | 8 12 | elrab2 | ⊢ ( 𝑆 ∈ 𝐴 ↔ ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |
| 14 | 6 13 | sylib | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑁 ) ) |