This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orngmul.0 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| orngmul.1 | ⊢ ≤ = ( le ‘ 𝑅 ) | ||
| orngmul.2 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| orngmul.3 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | orngsqr | ⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → 0 ≤ ( 𝑋 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orngmul.0 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | orngmul.1 | ⊢ ≤ = ( le ‘ 𝑅 ) | |
| 3 | orngmul.2 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | orngmul.3 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | simpll | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝑅 ∈ oRing ) | |
| 6 | simplr | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simpr | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ 𝑋 ) | |
| 8 | 1 2 3 4 | orngmul | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ) → 0 ≤ ( 𝑋 · 𝑋 ) ) |
| 9 | 5 6 7 6 7 8 | syl122anc | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑋 · 𝑋 ) ) |
| 10 | simpll | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑅 ∈ oRing ) | |
| 11 | orngring | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) | |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑅 ∈ Ring ) |
| 13 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑅 ∈ Grp ) |
| 15 | simplr | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) | |
| 16 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 17 | 1 16 | grpinvcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 18 | 14 15 17 | syl2anc | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 19 | orngogrp | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ oGrp ) | |
| 20 | isogrp | ⊢ ( 𝑅 ∈ oGrp ↔ ( 𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd ) ) | |
| 21 | 20 | simprbi | ⊢ ( 𝑅 ∈ oGrp → 𝑅 ∈ oMnd ) |
| 22 | 19 21 | syl | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ oMnd ) |
| 23 | 10 22 | syl | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑅 ∈ oMnd ) |
| 24 | 1 3 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 25 | 14 24 | syl | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 0 ∈ 𝐵 ) |
| 26 | simpl | ⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ oRing ) | |
| 27 | 26 11 13 24 | 4syl | ⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 28 | simpr | ⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 29 | 26 27 28 | 3jca | ⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 30 | eqid | ⊢ ( lt ‘ 𝑅 ) = ( lt ‘ 𝑅 ) | |
| 31 | 2 30 | pltle | ⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( lt ‘ 𝑅 ) 𝑋 → 0 ≤ 𝑋 ) ) |
| 32 | 31 | con3dimp | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ¬ 0 ( lt ‘ 𝑅 ) 𝑋 ) |
| 33 | 29 32 | sylan | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ¬ 0 ( lt ‘ 𝑅 ) 𝑋 ) |
| 34 | omndtos | ⊢ ( 𝑅 ∈ oMnd → 𝑅 ∈ Toset ) | |
| 35 | 1 2 30 | tosso | ⊢ ( 𝑅 ∈ Toset → ( 𝑅 ∈ Toset ↔ ( ( lt ‘ 𝑅 ) Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ) ) |
| 36 | 35 | ibi | ⊢ ( 𝑅 ∈ Toset → ( ( lt ‘ 𝑅 ) Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ) |
| 37 | 36 | simpld | ⊢ ( 𝑅 ∈ Toset → ( lt ‘ 𝑅 ) Or 𝐵 ) |
| 38 | 10 22 34 37 | 4syl | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( lt ‘ 𝑅 ) Or 𝐵 ) |
| 39 | solin | ⊢ ( ( ( lt ‘ 𝑅 ) Or 𝐵 ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) | |
| 40 | 38 25 15 39 | syl12anc | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) |
| 41 | 3orass | ⊢ ( ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ↔ ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) ) | |
| 42 | 40 41 | sylib | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) ) |
| 43 | orel1 | ⊢ ( ¬ 0 ( lt ‘ 𝑅 ) 𝑋 → ( ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) → ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) ) | |
| 44 | 33 42 43 | sylc | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) |
| 45 | orcom | ⊢ ( ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ↔ ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 0 = 𝑋 ) ) | |
| 46 | eqcom | ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
| 47 | 46 | orbi2i | ⊢ ( ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 0 = 𝑋 ) ↔ ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 𝑋 = 0 ) ) |
| 48 | 45 47 | bitri | ⊢ ( ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ↔ ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 𝑋 = 0 ) ) |
| 49 | 44 48 | sylib | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 𝑋 = 0 ) ) |
| 50 | tospos | ⊢ ( 𝑅 ∈ Toset → 𝑅 ∈ Poset ) | |
| 51 | 10 22 34 50 | 4syl | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑅 ∈ Poset ) |
| 52 | 1 2 30 | pleval2 | ⊢ ( ( 𝑅 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 ≤ 0 ↔ ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 𝑋 = 0 ) ) ) |
| 53 | 51 15 25 52 | syl3anc | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 𝑋 ≤ 0 ↔ ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 𝑋 = 0 ) ) ) |
| 54 | 49 53 | mpbird | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑋 ≤ 0 ) |
| 55 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 56 | 1 2 55 | omndadd | ⊢ ( ( 𝑅 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) ∧ 𝑋 ≤ 0 ) → ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ≤ ( 0 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
| 57 | 23 15 25 18 54 56 | syl131anc | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ≤ ( 0 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
| 58 | 1 55 3 16 | grprinv | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) = 0 ) |
| 59 | 14 15 58 | syl2anc | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) = 0 ) |
| 60 | 1 55 3 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) |
| 61 | 14 18 60 | syl2anc | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) |
| 62 | 57 59 61 | 3brtr3d | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 0 ≤ ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) |
| 63 | 1 2 3 4 | orngmul | ⊢ ( ( 𝑅 ∈ oRing ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 0 ≤ ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 0 ≤ ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ) → 0 ≤ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) · ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
| 64 | 10 18 62 18 62 63 | syl122anc | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 0 ≤ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) · ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
| 65 | 1 4 16 12 15 15 | ringm2neg | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) · ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) = ( 𝑋 · 𝑋 ) ) |
| 66 | 64 65 | breqtrd | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑋 · 𝑋 ) ) |
| 67 | 9 66 | pm2.61dan | ⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → 0 ≤ ( 𝑋 · 𝑋 ) ) |