This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negation of a product in a ring. ( mul2neg analog.) (Contributed by Mario Carneiro, 4-Dec-2014) (Proof shortened by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringneglmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringneglmul.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringneglmul.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| ringneglmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringneglmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringneglmul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | ringm2neg | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 · 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneglmul.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringneglmul.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringneglmul.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 4 | ringneglmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | ringneglmul.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ringneglmul.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 9 | 1 2 3 8 5 6 | rngm2neg | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( 𝑋 · 𝑌 ) ) |