This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndadd.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| omndadd.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | ||
| omndadd.2 | ⊢ + = ( +g ‘ 𝑀 ) | ||
| Assertion | omndadd | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndadd.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | omndadd.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | |
| 3 | omndadd.2 | ⊢ + = ( +g ‘ 𝑀 ) | |
| 4 | 1 3 2 | isomnd | ⊢ ( 𝑀 ∈ oMnd ↔ ( 𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) |
| 5 | 4 | simp3bi | ⊢ ( 𝑀 ∈ oMnd → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) |
| 6 | breq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 ≤ 𝑏 ↔ 𝑋 ≤ 𝑏 ) ) | |
| 7 | oveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 + 𝑐 ) = ( 𝑋 + 𝑐 ) ) | |
| 8 | 7 | breq1d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ↔ ( 𝑋 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) |
| 9 | 6 8 | imbi12d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ↔ ( 𝑋 ≤ 𝑏 → ( 𝑋 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) |
| 10 | breq2 | ⊢ ( 𝑏 = 𝑌 → ( 𝑋 ≤ 𝑏 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 11 | oveq1 | ⊢ ( 𝑏 = 𝑌 → ( 𝑏 + 𝑐 ) = ( 𝑌 + 𝑐 ) ) | |
| 12 | 11 | breq2d | ⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ↔ ( 𝑋 + 𝑐 ) ≤ ( 𝑌 + 𝑐 ) ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 ≤ 𝑏 → ( 𝑋 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ↔ ( 𝑋 ≤ 𝑌 → ( 𝑋 + 𝑐 ) ≤ ( 𝑌 + 𝑐 ) ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑐 = 𝑍 → ( 𝑋 + 𝑐 ) = ( 𝑋 + 𝑍 ) ) | |
| 15 | oveq2 | ⊢ ( 𝑐 = 𝑍 → ( 𝑌 + 𝑐 ) = ( 𝑌 + 𝑍 ) ) | |
| 16 | 14 15 | breq12d | ⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 + 𝑐 ) ≤ ( 𝑌 + 𝑐 ) ↔ ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 ≤ 𝑌 → ( 𝑋 + 𝑐 ) ≤ ( 𝑌 + 𝑐 ) ) ↔ ( 𝑋 ≤ 𝑌 → ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) ) ) |
| 18 | 9 13 17 | rspc3v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) ) ) |
| 19 | 5 18 | mpan9 | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) ) |
| 20 | 19 | 3impia | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) |