This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orngmul.0 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| orngmul.1 | ⊢ ≤ = ( le ‘ 𝑅 ) | ||
| orngmul.2 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| orngmul.3 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | orngmul | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 0 ≤ ( 𝑋 · 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orngmul.0 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | orngmul.1 | ⊢ ≤ = ( le ‘ 𝑅 ) | |
| 3 | orngmul.2 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | orngmul.3 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | simp2r | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 0 ≤ 𝑋 ) | |
| 6 | simp3r | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 0 ≤ 𝑌 ) | |
| 7 | simp2l | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 𝑋 ∈ 𝐵 ) | |
| 8 | simp3l | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 𝑌 ∈ 𝐵 ) | |
| 9 | 1 3 4 2 | isorng | ⊢ ( 𝑅 ∈ oRing ↔ ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
| 10 | 9 | simp3bi | ⊢ ( 𝑅 ∈ oRing → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) |
| 12 | breq2 | ⊢ ( 𝑎 = 𝑋 → ( 0 ≤ 𝑎 ↔ 0 ≤ 𝑋 ) ) | |
| 13 | 12 | anbi1d | ⊢ ( 𝑎 = 𝑋 → ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) ↔ ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏 ) ) ) |
| 14 | oveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑏 ) = ( 𝑋 · 𝑏 ) ) | |
| 15 | 14 | breq2d | ⊢ ( 𝑎 = 𝑋 → ( 0 ≤ ( 𝑎 · 𝑏 ) ↔ 0 ≤ ( 𝑋 · 𝑏 ) ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑎 = 𝑋 → ( ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ↔ ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑋 · 𝑏 ) ) ) ) |
| 17 | breq2 | ⊢ ( 𝑏 = 𝑌 → ( 0 ≤ 𝑏 ↔ 0 ≤ 𝑌 ) ) | |
| 18 | 17 | anbi2d | ⊢ ( 𝑏 = 𝑌 → ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏 ) ↔ ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌 ) ) ) |
| 19 | oveq2 | ⊢ ( 𝑏 = 𝑌 → ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑌 ) ) | |
| 20 | 19 | breq2d | ⊢ ( 𝑏 = 𝑌 → ( 0 ≤ ( 𝑋 · 𝑏 ) ↔ 0 ≤ ( 𝑋 · 𝑌 ) ) ) |
| 21 | 18 20 | imbi12d | ⊢ ( 𝑏 = 𝑌 → ( ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑋 · 𝑏 ) ) ↔ ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌 ) → 0 ≤ ( 𝑋 · 𝑌 ) ) ) ) |
| 22 | 16 21 | rspc2va | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) → ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌 ) → 0 ≤ ( 𝑋 · 𝑌 ) ) ) |
| 23 | 7 8 11 22 | syl21anc | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌 ) → 0 ≤ ( 𝑋 · 𝑌 ) ) ) |
| 24 | 5 6 23 | mp2and | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 0 ≤ ( 𝑋 · 𝑌 ) ) |