This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orngmul.0 | |- B = ( Base ` R ) |
|
| orngmul.1 | |- .<_ = ( le ` R ) |
||
| orngmul.2 | |- .0. = ( 0g ` R ) |
||
| orngmul.3 | |- .x. = ( .r ` R ) |
||
| Assertion | orngsqr | |- ( ( R e. oRing /\ X e. B ) -> .0. .<_ ( X .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orngmul.0 | |- B = ( Base ` R ) |
|
| 2 | orngmul.1 | |- .<_ = ( le ` R ) |
|
| 3 | orngmul.2 | |- .0. = ( 0g ` R ) |
|
| 4 | orngmul.3 | |- .x. = ( .r ` R ) |
|
| 5 | simpll | |- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> R e. oRing ) |
|
| 6 | simplr | |- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> X e. B ) |
|
| 7 | simpr | |- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> .0. .<_ X ) |
|
| 8 | 1 2 3 4 | orngmul | |- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( X e. B /\ .0. .<_ X ) ) -> .0. .<_ ( X .x. X ) ) |
| 9 | 5 6 7 6 7 8 | syl122anc | |- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> .0. .<_ ( X .x. X ) ) |
| 10 | simpll | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. oRing ) |
|
| 11 | orngring | |- ( R e. oRing -> R e. Ring ) |
|
| 12 | 11 | ad2antrr | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. Ring ) |
| 13 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 14 | 12 13 | syl | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. Grp ) |
| 15 | simplr | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> X e. B ) |
|
| 16 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 17 | 1 16 | grpinvcl | |- ( ( R e. Grp /\ X e. B ) -> ( ( invg ` R ) ` X ) e. B ) |
| 18 | 14 15 17 | syl2anc | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( ( invg ` R ) ` X ) e. B ) |
| 19 | orngogrp | |- ( R e. oRing -> R e. oGrp ) |
|
| 20 | isogrp | |- ( R e. oGrp <-> ( R e. Grp /\ R e. oMnd ) ) |
|
| 21 | 20 | simprbi | |- ( R e. oGrp -> R e. oMnd ) |
| 22 | 19 21 | syl | |- ( R e. oRing -> R e. oMnd ) |
| 23 | 10 22 | syl | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. oMnd ) |
| 24 | 1 3 | grpidcl | |- ( R e. Grp -> .0. e. B ) |
| 25 | 14 24 | syl | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. e. B ) |
| 26 | simpl | |- ( ( R e. oRing /\ X e. B ) -> R e. oRing ) |
|
| 27 | 26 11 13 24 | 4syl | |- ( ( R e. oRing /\ X e. B ) -> .0. e. B ) |
| 28 | simpr | |- ( ( R e. oRing /\ X e. B ) -> X e. B ) |
|
| 29 | 26 27 28 | 3jca | |- ( ( R e. oRing /\ X e. B ) -> ( R e. oRing /\ .0. e. B /\ X e. B ) ) |
| 30 | eqid | |- ( lt ` R ) = ( lt ` R ) |
|
| 31 | 2 30 | pltle | |- ( ( R e. oRing /\ .0. e. B /\ X e. B ) -> ( .0. ( lt ` R ) X -> .0. .<_ X ) ) |
| 32 | 31 | con3dimp | |- ( ( ( R e. oRing /\ .0. e. B /\ X e. B ) /\ -. .0. .<_ X ) -> -. .0. ( lt ` R ) X ) |
| 33 | 29 32 | sylan | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> -. .0. ( lt ` R ) X ) |
| 34 | omndtos | |- ( R e. oMnd -> R e. Toset ) |
|
| 35 | 1 2 30 | tosso | |- ( R e. Toset -> ( R e. Toset <-> ( ( lt ` R ) Or B /\ ( _I |` B ) C_ .<_ ) ) ) |
| 36 | 35 | ibi | |- ( R e. Toset -> ( ( lt ` R ) Or B /\ ( _I |` B ) C_ .<_ ) ) |
| 37 | 36 | simpld | |- ( R e. Toset -> ( lt ` R ) Or B ) |
| 38 | 10 22 34 37 | 4syl | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( lt ` R ) Or B ) |
| 39 | solin | |- ( ( ( lt ` R ) Or B /\ ( .0. e. B /\ X e. B ) ) -> ( .0. ( lt ` R ) X \/ .0. = X \/ X ( lt ` R ) .0. ) ) |
|
| 40 | 38 25 15 39 | syl12anc | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. ( lt ` R ) X \/ .0. = X \/ X ( lt ` R ) .0. ) ) |
| 41 | 3orass | |- ( ( .0. ( lt ` R ) X \/ .0. = X \/ X ( lt ` R ) .0. ) <-> ( .0. ( lt ` R ) X \/ ( .0. = X \/ X ( lt ` R ) .0. ) ) ) |
|
| 42 | 40 41 | sylib | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. ( lt ` R ) X \/ ( .0. = X \/ X ( lt ` R ) .0. ) ) ) |
| 43 | orel1 | |- ( -. .0. ( lt ` R ) X -> ( ( .0. ( lt ` R ) X \/ ( .0. = X \/ X ( lt ` R ) .0. ) ) -> ( .0. = X \/ X ( lt ` R ) .0. ) ) ) |
|
| 44 | 33 42 43 | sylc | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. = X \/ X ( lt ` R ) .0. ) ) |
| 45 | orcom | |- ( ( .0. = X \/ X ( lt ` R ) .0. ) <-> ( X ( lt ` R ) .0. \/ .0. = X ) ) |
|
| 46 | eqcom | |- ( .0. = X <-> X = .0. ) |
|
| 47 | 46 | orbi2i | |- ( ( X ( lt ` R ) .0. \/ .0. = X ) <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) |
| 48 | 45 47 | bitri | |- ( ( .0. = X \/ X ( lt ` R ) .0. ) <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) |
| 49 | 44 48 | sylib | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X ( lt ` R ) .0. \/ X = .0. ) ) |
| 50 | tospos | |- ( R e. Toset -> R e. Poset ) |
|
| 51 | 10 22 34 50 | 4syl | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. Poset ) |
| 52 | 1 2 30 | pleval2 | |- ( ( R e. Poset /\ X e. B /\ .0. e. B ) -> ( X .<_ .0. <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) ) |
| 53 | 51 15 25 52 | syl3anc | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X .<_ .0. <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) ) |
| 54 | 49 53 | mpbird | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> X .<_ .0. ) |
| 55 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 56 | 1 2 55 | omndadd | |- ( ( R e. oMnd /\ ( X e. B /\ .0. e. B /\ ( ( invg ` R ) ` X ) e. B ) /\ X .<_ .0. ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) .<_ ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) ) |
| 57 | 23 15 25 18 54 56 | syl131anc | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) .<_ ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) ) |
| 58 | 1 55 3 16 | grprinv | |- ( ( R e. Grp /\ X e. B ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) = .0. ) |
| 59 | 14 15 58 | syl2anc | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) = .0. ) |
| 60 | 1 55 3 | grplid | |- ( ( R e. Grp /\ ( ( invg ` R ) ` X ) e. B ) -> ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) = ( ( invg ` R ) ` X ) ) |
| 61 | 14 18 60 | syl2anc | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) = ( ( invg ` R ) ` X ) ) |
| 62 | 57 59 61 | 3brtr3d | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. .<_ ( ( invg ` R ) ` X ) ) |
| 63 | 1 2 3 4 | orngmul | |- ( ( R e. oRing /\ ( ( ( invg ` R ) ` X ) e. B /\ .0. .<_ ( ( invg ` R ) ` X ) ) /\ ( ( ( invg ` R ) ` X ) e. B /\ .0. .<_ ( ( invg ` R ) ` X ) ) ) -> .0. .<_ ( ( ( invg ` R ) ` X ) .x. ( ( invg ` R ) ` X ) ) ) |
| 64 | 10 18 62 18 62 63 | syl122anc | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. .<_ ( ( ( invg ` R ) ` X ) .x. ( ( invg ` R ) ` X ) ) ) |
| 65 | 1 4 16 12 15 15 | ringm2neg | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( ( ( invg ` R ) ` X ) .x. ( ( invg ` R ) ` X ) ) = ( X .x. X ) ) |
| 66 | 64 65 | breqtrd | |- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. .<_ ( X .x. X ) ) |
| 67 | 9 66 | pm2.61dan | |- ( ( R e. oRing /\ X e. B ) -> .0. .<_ ( X .x. X ) ) |