This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ornglmullt.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ornglmullt.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ornglmullt.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ornglmullt.1 | ⊢ ( 𝜑 → 𝑅 ∈ oRing ) | ||
| ornglmullt.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ornglmullt.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ornglmullt.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| orngmulle.l | ⊢ ≤ = ( le ‘ 𝑅 ) | ||
| orngmulle.5 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| orngmulle.6 | ⊢ ( 𝜑 → 0 ≤ 𝑍 ) | ||
| Assertion | ornglmulle | ⊢ ( 𝜑 → ( 𝑍 · 𝑋 ) ≤ ( 𝑍 · 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornglmullt.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ornglmullt.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ornglmullt.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | ornglmullt.1 | ⊢ ( 𝜑 → 𝑅 ∈ oRing ) | |
| 5 | ornglmullt.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ornglmullt.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | ornglmullt.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | orngmulle.l | ⊢ ≤ = ( le ‘ 𝑅 ) | |
| 9 | orngmulle.5 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 10 | orngmulle.6 | ⊢ ( 𝜑 → 0 ≤ 𝑍 ) | |
| 11 | orngogrp | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ oGrp ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝑅 ∈ oGrp ) |
| 13 | isogrp | ⊢ ( 𝑅 ∈ oGrp ↔ ( 𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd ) ) | |
| 14 | 13 | simprbi | ⊢ ( 𝑅 ∈ oGrp → 𝑅 ∈ oMnd ) |
| 15 | 12 14 | syl | ⊢ ( 𝜑 → 𝑅 ∈ oMnd ) |
| 16 | orngring | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) | |
| 17 | 4 16 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 18 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 20 | 1 3 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 22 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 · 𝑌 ) ∈ 𝐵 ) |
| 23 | 17 7 6 22 | syl3anc | ⊢ ( 𝜑 → ( 𝑍 · 𝑌 ) ∈ 𝐵 ) |
| 24 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑍 · 𝑋 ) ∈ 𝐵 ) |
| 25 | 17 7 5 24 | syl3anc | ⊢ ( 𝜑 → ( 𝑍 · 𝑋 ) ∈ 𝐵 ) |
| 26 | eqid | ⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) | |
| 27 | 1 26 | grpsubcl | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑍 · 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 · 𝑋 ) ∈ 𝐵 ) → ( ( 𝑍 · 𝑌 ) ( -g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ∈ 𝐵 ) |
| 28 | 19 23 25 27 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑍 · 𝑌 ) ( -g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ∈ 𝐵 ) |
| 29 | 1 26 | grpsubcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ( -g ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ) |
| 30 | 19 6 5 29 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 ( -g ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ) |
| 31 | 1 3 26 | grpsubid | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( -g ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 32 | 19 5 31 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝑅 ) 𝑋 ) = 0 ) |
| 33 | 1 8 26 | ogrpsub | ⊢ ( ( 𝑅 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ( -g ‘ 𝑅 ) 𝑋 ) ≤ ( 𝑌 ( -g ‘ 𝑅 ) 𝑋 ) ) |
| 34 | 12 5 6 5 9 33 | syl131anc | ⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝑅 ) 𝑋 ) ≤ ( 𝑌 ( -g ‘ 𝑅 ) 𝑋 ) ) |
| 35 | 32 34 | eqbrtrrd | ⊢ ( 𝜑 → 0 ≤ ( 𝑌 ( -g ‘ 𝑅 ) 𝑋 ) ) |
| 36 | 1 8 3 2 | orngmul | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑍 ∈ 𝐵 ∧ 0 ≤ 𝑍 ) ∧ ( ( 𝑌 ( -g ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ∧ 0 ≤ ( 𝑌 ( -g ‘ 𝑅 ) 𝑋 ) ) ) → 0 ≤ ( 𝑍 · ( 𝑌 ( -g ‘ 𝑅 ) 𝑋 ) ) ) |
| 37 | 4 7 10 30 35 36 | syl122anc | ⊢ ( 𝜑 → 0 ≤ ( 𝑍 · ( 𝑌 ( -g ‘ 𝑅 ) 𝑋 ) ) ) |
| 38 | 1 2 26 17 7 6 5 | ringsubdi | ⊢ ( 𝜑 → ( 𝑍 · ( 𝑌 ( -g ‘ 𝑅 ) 𝑋 ) ) = ( ( 𝑍 · 𝑌 ) ( -g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ) |
| 39 | 37 38 | breqtrd | ⊢ ( 𝜑 → 0 ≤ ( ( 𝑍 · 𝑌 ) ( -g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ) |
| 40 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 41 | 1 8 40 | omndadd | ⊢ ( ( 𝑅 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ( ( 𝑍 · 𝑌 ) ( -g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ∈ 𝐵 ∧ ( 𝑍 · 𝑋 ) ∈ 𝐵 ) ∧ 0 ≤ ( ( 𝑍 · 𝑌 ) ( -g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ≤ ( ( ( 𝑍 · 𝑌 ) ( -g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ( +g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ) |
| 42 | 15 21 28 25 39 41 | syl131anc | ⊢ ( 𝜑 → ( 0 ( +g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ≤ ( ( ( 𝑍 · 𝑌 ) ( -g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ( +g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ) |
| 43 | 1 40 3 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑍 · 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) = ( 𝑍 · 𝑋 ) ) |
| 44 | 19 25 43 | syl2anc | ⊢ ( 𝜑 → ( 0 ( +g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) = ( 𝑍 · 𝑋 ) ) |
| 45 | 1 40 26 | grpnpcan | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑍 · 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 · 𝑋 ) ∈ 𝐵 ) → ( ( ( 𝑍 · 𝑌 ) ( -g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ( +g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) = ( 𝑍 · 𝑌 ) ) |
| 46 | 19 23 25 45 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑍 · 𝑌 ) ( -g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) ( +g ‘ 𝑅 ) ( 𝑍 · 𝑋 ) ) = ( 𝑍 · 𝑌 ) ) |
| 47 | 42 44 46 | 3brtr3d | ⊢ ( 𝜑 → ( 𝑍 · 𝑋 ) ≤ ( 𝑍 · 𝑌 ) ) |