This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than or equal to" in terms of "less than". ( sspss analog.) (Contributed by NM, 17-Oct-2011) (Revised by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pleval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pleval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| pleval2.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | pleval2 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pleval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pleval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | pleval2.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | 1 2 3 | pleval2i | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) ) |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) ) |
| 6 | 2 3 | pltle | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ≤ 𝑌 ) ) |
| 7 | 1 2 | posref | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| 9 | breq2 | ⊢ ( 𝑋 = 𝑌 → ( 𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 10 | 8 9 | syl5ibcom | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 → 𝑋 ≤ 𝑌 ) ) |
| 11 | 6 10 | jaod | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) → 𝑋 ≤ 𝑌 ) ) |
| 12 | 5 11 | impbid | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) ) |