This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndmul.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| omndmul.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | ||
| omndmul2.2 | ⊢ · = ( .g ‘ 𝑀 ) | ||
| omndmul2.3 | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| Assertion | omndmul2 | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑁 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | omndmul.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | |
| 3 | omndmul2.2 | ⊢ · = ( .g ‘ 𝑀 ) | |
| 4 | omndmul2.3 | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 5 | df-3an | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ↔ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 0 ≤ 𝑋 ) ) | |
| 6 | anass | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ↔ ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ) ) | |
| 7 | 6 | anbi1i | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ↔ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 0 ≤ 𝑋 ) ) |
| 8 | 5 7 | bitr4i | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ↔ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ) |
| 9 | simplr | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 𝑁 ∈ ℕ0 ) | |
| 10 | oveq1 | ⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑋 ) = ( 0 · 𝑋 ) ) | |
| 11 | 10 | breq2d | ⊢ ( 𝑚 = 0 → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( 0 · 𝑋 ) ) ) |
| 12 | oveq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 𝑋 ) = ( 𝑛 · 𝑋 ) ) | |
| 13 | 12 | breq2d | ⊢ ( 𝑚 = 𝑛 → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( 𝑛 · 𝑋 ) ) ) |
| 14 | oveq1 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 · 𝑋 ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) | |
| 15 | 14 | breq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑚 = 𝑁 → ( 𝑚 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) | |
| 17 | 16 | breq2d | ⊢ ( 𝑚 = 𝑁 → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( 𝑁 · 𝑋 ) ) ) |
| 18 | omndtos | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) | |
| 19 | tospos | ⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Poset ) |
| 21 | omndmnd | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) | |
| 22 | 1 4 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
| 23 | 21 22 | syl | ⊢ ( 𝑀 ∈ oMnd → 0 ∈ 𝐵 ) |
| 24 | 1 2 | posref | ⊢ ( ( 𝑀 ∈ Poset ∧ 0 ∈ 𝐵 ) → 0 ≤ 0 ) |
| 25 | 20 23 24 | syl2anc | ⊢ ( 𝑀 ∈ oMnd → 0 ≤ 0 ) |
| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ 0 ) |
| 27 | 1 4 3 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = 0 ) |
| 28 | 27 | ad3antlr | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → ( 0 · 𝑋 ) = 0 ) |
| 29 | 26 28 | breqtrrd | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 0 · 𝑋 ) ) |
| 30 | 20 | ad5antr | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑀 ∈ Poset ) |
| 31 | 21 | ad5antr | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑀 ∈ Mnd ) |
| 32 | 31 22 | syl | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 0 ∈ 𝐵 ) |
| 33 | simplr | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑛 ∈ ℕ0 ) | |
| 34 | simp-5r | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑋 ∈ 𝐵 ) | |
| 35 | 1 3 31 33 34 | mulgnn0cld | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 36 | simpr32 | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) ) → 𝑛 ∈ ℕ0 ) | |
| 37 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 38 | 37 | a1i | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) ) → 1 ∈ ℕ0 ) |
| 39 | 36 38 | nn0addcld | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 40 | 39 | 3anassrs | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 41 | 40 | 3anassrs | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 42 | 1 3 31 41 34 | mulgnn0cld | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) |
| 43 | 32 35 42 | 3jca | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 0 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) ) |
| 44 | simpr | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 0 ≤ ( 𝑛 · 𝑋 ) ) | |
| 45 | simp-4l | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ oMnd ) | |
| 46 | 21 | ad4antr | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ Mnd ) |
| 47 | 46 22 | syl | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 0 ∈ 𝐵 ) |
| 48 | simp-4r | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) | |
| 49 | simpr | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 50 | 1 3 46 49 48 | mulgnn0cld | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 51 | simplr | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ 𝑋 ) | |
| 52 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 53 | 1 2 52 | omndadd | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
| 54 | 45 47 48 50 51 53 | syl131anc | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
| 55 | 1 52 4 | mndlid | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( 𝑛 · 𝑋 ) ) |
| 56 | 46 50 55 | syl2anc | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( 𝑛 · 𝑋 ) ) |
| 57 | 37 | a1i | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 1 ∈ ℕ0 ) |
| 58 | 1 3 52 | mulgnn0dir | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 1 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 1 + 𝑛 ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
| 59 | 46 57 49 48 58 | syl13anc | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 + 𝑛 ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
| 60 | 1cnd | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → 1 ∈ ℂ ) | |
| 61 | simpr3 | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑛 ∈ ℕ0 ) | |
| 62 | 61 | nn0cnd | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑛 ∈ ℂ ) |
| 63 | 60 62 | addcomd | ⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → ( 1 + 𝑛 ) = ( 𝑛 + 1 ) ) |
| 64 | 63 | 3anassrs | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 1 + 𝑛 ) = ( 𝑛 + 1 ) ) |
| 65 | 64 | oveq1d | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 + 𝑛 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 66 | 1 3 | mulg1 | ⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
| 67 | 48 66 | syl | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 68 | 67 | oveq1d | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
| 69 | 59 65 68 | 3eqtr3rd | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 70 | 54 56 69 | 3brtr3d | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 72 | 1 2 | postr | ⊢ ( ( 𝑀 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) ) → ( ( 0 ≤ ( 𝑛 · 𝑋 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) → 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
| 73 | 72 | imp | ⊢ ( ( ( 𝑀 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) ) ∧ ( 0 ≤ ( 𝑛 · 𝑋 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) → 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 74 | 30 43 44 71 73 | syl22anc | ⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 75 | 11 13 15 17 29 74 | nn0indd | ⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝑁 · 𝑋 ) ) |
| 76 | 9 75 | mpdan | ⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑁 · 𝑋 ) ) |
| 77 | 8 76 | sylbi | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑁 · 𝑋 ) ) |