This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A poset ordering is transitive. (Contributed by NM, 11-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | posi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| posi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | postr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | posi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | 1 2 | posi | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) ) |
| 4 | 3 | simp3d | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |