This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndmul.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| omndmul.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | ||
| omndmul3.m | ⊢ · = ( .g ‘ 𝑀 ) | ||
| omndmul3.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| omndmul3.o | ⊢ ( 𝜑 → 𝑀 ∈ oMnd ) | ||
| omndmul3.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| omndmul3.2 | ⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) | ||
| omndmul3.3 | ⊢ ( 𝜑 → 𝑁 ≤ 𝑃 ) | ||
| omndmul3.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| omndmul3.5 | ⊢ ( 𝜑 → 0 ≤ 𝑋 ) | ||
| Assertion | omndmul3 | ⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ≤ ( 𝑃 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | omndmul.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | |
| 3 | omndmul3.m | ⊢ · = ( .g ‘ 𝑀 ) | |
| 4 | omndmul3.0 | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 5 | omndmul3.o | ⊢ ( 𝜑 → 𝑀 ∈ oMnd ) | |
| 6 | omndmul3.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 7 | omndmul3.2 | ⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) | |
| 8 | omndmul3.3 | ⊢ ( 𝜑 → 𝑁 ≤ 𝑃 ) | |
| 9 | omndmul3.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 10 | omndmul3.5 | ⊢ ( 𝜑 → 0 ≤ 𝑋 ) | |
| 11 | omndmnd | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) | |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 13 | 1 4 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 15 | nn0sub | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑃 ↔ ( 𝑃 − 𝑁 ) ∈ ℕ0 ) ) | |
| 16 | 15 | biimpa | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( 𝑃 − 𝑁 ) ∈ ℕ0 ) |
| 17 | 6 7 8 16 | syl21anc | ⊢ ( 𝜑 → ( 𝑃 − 𝑁 ) ∈ ℕ0 ) |
| 18 | 1 3 12 17 9 | mulgnn0cld | ⊢ ( 𝜑 → ( ( 𝑃 − 𝑁 ) · 𝑋 ) ∈ 𝐵 ) |
| 19 | 1 3 12 6 9 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 20 | 1 2 3 4 | omndmul2 | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 − 𝑁 ) ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( ( 𝑃 − 𝑁 ) · 𝑋 ) ) |
| 21 | 5 9 17 10 20 | syl121anc | ⊢ ( 𝜑 → 0 ≤ ( ( 𝑃 − 𝑁 ) · 𝑋 ) ) |
| 22 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 23 | 1 2 22 | omndadd | ⊢ ( ( 𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ( ( 𝑃 − 𝑁 ) · 𝑋 ) ∈ 𝐵 ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) ∧ 0 ≤ ( ( 𝑃 − 𝑁 ) · 𝑋 ) ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ≤ ( ( ( 𝑃 − 𝑁 ) · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ) |
| 24 | 5 14 18 19 21 23 | syl131anc | ⊢ ( 𝜑 → ( 0 ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ≤ ( ( ( 𝑃 − 𝑁 ) · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ) |
| 25 | 1 22 4 | mndlid | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
| 26 | 12 19 25 | syl2anc | ⊢ ( 𝜑 → ( 0 ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
| 27 | 1 3 22 | mulgnn0dir | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝑃 − 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑃 − 𝑁 ) + 𝑁 ) · 𝑋 ) = ( ( ( 𝑃 − 𝑁 ) · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ) |
| 28 | 12 17 6 9 27 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝑃 − 𝑁 ) + 𝑁 ) · 𝑋 ) = ( ( ( 𝑃 − 𝑁 ) · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ) |
| 29 | 7 | nn0cnd | ⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 30 | 6 | nn0cnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 31 | 29 30 | npcand | ⊢ ( 𝜑 → ( ( 𝑃 − 𝑁 ) + 𝑁 ) = 𝑃 ) |
| 32 | 31 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑃 − 𝑁 ) + 𝑁 ) · 𝑋 ) = ( 𝑃 · 𝑋 ) ) |
| 33 | 28 32 | eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝑃 − 𝑁 ) · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) = ( 𝑃 · 𝑋 ) ) |
| 34 | 24 26 33 | 3brtr3d | ⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ≤ ( 𝑃 · 𝑋 ) ) |