This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndmul.0 | |- B = ( Base ` M ) |
|
| omndmul.1 | |- .<_ = ( le ` M ) |
||
| omndmul2.2 | |- .x. = ( .g ` M ) |
||
| omndmul2.3 | |- .0. = ( 0g ` M ) |
||
| Assertion | omndmul2 | |- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( N .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul.0 | |- B = ( Base ` M ) |
|
| 2 | omndmul.1 | |- .<_ = ( le ` M ) |
|
| 3 | omndmul2.2 | |- .x. = ( .g ` M ) |
|
| 4 | omndmul2.3 | |- .0. = ( 0g ` M ) |
|
| 5 | df-3an | |- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) /\ .0. .<_ X ) <-> ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) ) /\ .0. .<_ X ) ) |
|
| 6 | anass | |- ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) <-> ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) ) ) |
|
| 7 | 6 | anbi1i | |- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) <-> ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) ) /\ .0. .<_ X ) ) |
| 8 | 5 7 | bitr4i | |- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) /\ .0. .<_ X ) <-> ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) ) |
| 9 | simplr | |- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> N e. NN0 ) |
|
| 10 | oveq1 | |- ( m = 0 -> ( m .x. X ) = ( 0 .x. X ) ) |
|
| 11 | 10 | breq2d | |- ( m = 0 -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( 0 .x. X ) ) ) |
| 12 | oveq1 | |- ( m = n -> ( m .x. X ) = ( n .x. X ) ) |
|
| 13 | 12 | breq2d | |- ( m = n -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( n .x. X ) ) ) |
| 14 | oveq1 | |- ( m = ( n + 1 ) -> ( m .x. X ) = ( ( n + 1 ) .x. X ) ) |
|
| 15 | 14 | breq2d | |- ( m = ( n + 1 ) -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( ( n + 1 ) .x. X ) ) ) |
| 16 | oveq1 | |- ( m = N -> ( m .x. X ) = ( N .x. X ) ) |
|
| 17 | 16 | breq2d | |- ( m = N -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( N .x. X ) ) ) |
| 18 | omndtos | |- ( M e. oMnd -> M e. Toset ) |
|
| 19 | tospos | |- ( M e. Toset -> M e. Poset ) |
|
| 20 | 18 19 | syl | |- ( M e. oMnd -> M e. Poset ) |
| 21 | omndmnd | |- ( M e. oMnd -> M e. Mnd ) |
|
| 22 | 1 4 | mndidcl | |- ( M e. Mnd -> .0. e. B ) |
| 23 | 21 22 | syl | |- ( M e. oMnd -> .0. e. B ) |
| 24 | 1 2 | posref | |- ( ( M e. Poset /\ .0. e. B ) -> .0. .<_ .0. ) |
| 25 | 20 23 24 | syl2anc | |- ( M e. oMnd -> .0. .<_ .0. ) |
| 26 | 25 | ad3antrrr | |- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ .0. ) |
| 27 | 1 4 3 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = .0. ) |
| 28 | 27 | ad3antlr | |- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> ( 0 .x. X ) = .0. ) |
| 29 | 26 28 | breqtrrd | |- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( 0 .x. X ) ) |
| 30 | 20 | ad5antr | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> M e. Poset ) |
| 31 | 21 | ad5antr | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> M e. Mnd ) |
| 32 | 31 22 | syl | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> .0. e. B ) |
| 33 | simplr | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> n e. NN0 ) |
|
| 34 | simp-5r | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> X e. B ) |
|
| 35 | 1 3 31 33 34 | mulgnn0cld | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( n .x. X ) e. B ) |
| 36 | simpr32 | |- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) ) -> n e. NN0 ) |
|
| 37 | 1nn0 | |- 1 e. NN0 |
|
| 38 | 37 | a1i | |- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) ) -> 1 e. NN0 ) |
| 39 | 36 38 | nn0addcld | |- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) ) -> ( n + 1 ) e. NN0 ) |
| 40 | 39 | 3anassrs | |- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) -> ( n + 1 ) e. NN0 ) |
| 41 | 40 | 3anassrs | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( n + 1 ) e. NN0 ) |
| 42 | 1 3 31 41 34 | mulgnn0cld | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( ( n + 1 ) .x. X ) e. B ) |
| 43 | 32 35 42 | 3jca | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( .0. e. B /\ ( n .x. X ) e. B /\ ( ( n + 1 ) .x. X ) e. B ) ) |
| 44 | simpr | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> .0. .<_ ( n .x. X ) ) |
|
| 45 | simp-4l | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> M e. oMnd ) |
|
| 46 | 21 | ad4antr | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> M e. Mnd ) |
| 47 | 46 22 | syl | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> .0. e. B ) |
| 48 | simp-4r | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> X e. B ) |
|
| 49 | simpr | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> n e. NN0 ) |
|
| 50 | 1 3 46 49 48 | mulgnn0cld | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( n .x. X ) e. B ) |
| 51 | simplr | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> .0. .<_ X ) |
|
| 52 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 53 | 1 2 52 | omndadd | |- ( ( M e. oMnd /\ ( .0. e. B /\ X e. B /\ ( n .x. X ) e. B ) /\ .0. .<_ X ) -> ( .0. ( +g ` M ) ( n .x. X ) ) .<_ ( X ( +g ` M ) ( n .x. X ) ) ) |
| 54 | 45 47 48 50 51 53 | syl131anc | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( .0. ( +g ` M ) ( n .x. X ) ) .<_ ( X ( +g ` M ) ( n .x. X ) ) ) |
| 55 | 1 52 4 | mndlid | |- ( ( M e. Mnd /\ ( n .x. X ) e. B ) -> ( .0. ( +g ` M ) ( n .x. X ) ) = ( n .x. X ) ) |
| 56 | 46 50 55 | syl2anc | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( .0. ( +g ` M ) ( n .x. X ) ) = ( n .x. X ) ) |
| 57 | 37 | a1i | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> 1 e. NN0 ) |
| 58 | 1 3 52 | mulgnn0dir | |- ( ( M e. Mnd /\ ( 1 e. NN0 /\ n e. NN0 /\ X e. B ) ) -> ( ( 1 + n ) .x. X ) = ( ( 1 .x. X ) ( +g ` M ) ( n .x. X ) ) ) |
| 59 | 46 57 49 48 58 | syl13anc | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( ( 1 + n ) .x. X ) = ( ( 1 .x. X ) ( +g ` M ) ( n .x. X ) ) ) |
| 60 | 1cnd | |- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> 1 e. CC ) |
|
| 61 | simpr3 | |- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> n e. NN0 ) |
|
| 62 | 61 | nn0cnd | |- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> n e. CC ) |
| 63 | 60 62 | addcomd | |- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> ( 1 + n ) = ( n + 1 ) ) |
| 64 | 63 | 3anassrs | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( 1 + n ) = ( n + 1 ) ) |
| 65 | 64 | oveq1d | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( ( 1 + n ) .x. X ) = ( ( n + 1 ) .x. X ) ) |
| 66 | 1 3 | mulg1 | |- ( X e. B -> ( 1 .x. X ) = X ) |
| 67 | 48 66 | syl | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( 1 .x. X ) = X ) |
| 68 | 67 | oveq1d | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( ( 1 .x. X ) ( +g ` M ) ( n .x. X ) ) = ( X ( +g ` M ) ( n .x. X ) ) ) |
| 69 | 59 65 68 | 3eqtr3rd | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( X ( +g ` M ) ( n .x. X ) ) = ( ( n + 1 ) .x. X ) ) |
| 70 | 54 56 69 | 3brtr3d | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) |
| 71 | 70 | adantr | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) |
| 72 | 1 2 | postr | |- ( ( M e. Poset /\ ( .0. e. B /\ ( n .x. X ) e. B /\ ( ( n + 1 ) .x. X ) e. B ) ) -> ( ( .0. .<_ ( n .x. X ) /\ ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) -> .0. .<_ ( ( n + 1 ) .x. X ) ) ) |
| 73 | 72 | imp | |- ( ( ( M e. Poset /\ ( .0. e. B /\ ( n .x. X ) e. B /\ ( ( n + 1 ) .x. X ) e. B ) ) /\ ( .0. .<_ ( n .x. X ) /\ ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) ) -> .0. .<_ ( ( n + 1 ) .x. X ) ) |
| 74 | 30 43 44 71 73 | syl22anc | |- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> .0. .<_ ( ( n + 1 ) .x. X ) ) |
| 75 | 11 13 15 17 29 74 | nn0indd | |- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ N e. NN0 ) -> .0. .<_ ( N .x. X ) ) |
| 76 | 9 75 | mpdan | |- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( N .x. X ) ) |
| 77 | 8 76 | sylbi | |- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( N .x. X ) ) |