This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oneo | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ¬ suc 𝐶 = ( 2o ·o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onnbtwn | ⊢ ( 𝐴 ∈ On → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
| 3 | suceq | ⊢ ( 𝐶 = ( 2o ·o 𝐴 ) → suc 𝐶 = suc ( 2o ·o 𝐴 ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝐶 = ( 2o ·o 𝐴 ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) ↔ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) ↔ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) ) |
| 6 | ovex | ⊢ ( 2o ·o 𝐴 ) ∈ V | |
| 7 | 6 | sucid | ⊢ ( 2o ·o 𝐴 ) ∈ suc ( 2o ·o 𝐴 ) |
| 8 | eleq2 | ⊢ ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( ( 2o ·o 𝐴 ) ∈ suc ( 2o ·o 𝐴 ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) | |
| 9 | 7 8 | mpbii | ⊢ ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) |
| 10 | 2on | ⊢ 2o ∈ On | |
| 11 | omord | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 2o ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) | |
| 12 | 10 11 | mp3an3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) |
| 13 | simpl | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) → 𝐴 ∈ 𝐵 ) | |
| 14 | 12 13 | biimtrrdi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 15 | 9 14 | syl5 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 16 | simpr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) | |
| 17 | omcl | ⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ On ) → ( 2o ·o 𝐴 ) ∈ On ) | |
| 18 | 10 17 | mpan | ⊢ ( 𝐴 ∈ On → ( 2o ·o 𝐴 ) ∈ On ) |
| 19 | oa1suc | ⊢ ( ( 2o ·o 𝐴 ) ∈ On → ( ( 2o ·o 𝐴 ) +o 1o ) = suc ( 2o ·o 𝐴 ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝐴 ∈ On → ( ( 2o ·o 𝐴 ) +o 1o ) = suc ( 2o ·o 𝐴 ) ) |
| 21 | 1oex | ⊢ 1o ∈ V | |
| 22 | 21 | sucid | ⊢ 1o ∈ suc 1o |
| 23 | df-2o | ⊢ 2o = suc 1o | |
| 24 | 22 23 | eleqtrri | ⊢ 1o ∈ 2o |
| 25 | 1on | ⊢ 1o ∈ On | |
| 26 | oaord | ⊢ ( ( 1o ∈ On ∧ 2o ∈ On ∧ ( 2o ·o 𝐴 ) ∈ On ) → ( 1o ∈ 2o ↔ ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) ) | |
| 27 | 25 10 18 26 | mp3an12i | ⊢ ( 𝐴 ∈ On → ( 1o ∈ 2o ↔ ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) ) |
| 28 | 24 27 | mpbii | ⊢ ( 𝐴 ∈ On → ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) |
| 29 | omsuc | ⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ On ) → ( 2o ·o suc 𝐴 ) = ( ( 2o ·o 𝐴 ) +o 2o ) ) | |
| 30 | 10 29 | mpan | ⊢ ( 𝐴 ∈ On → ( 2o ·o suc 𝐴 ) = ( ( 2o ·o 𝐴 ) +o 2o ) ) |
| 31 | 28 30 | eleqtrrd | ⊢ ( 𝐴 ∈ On → ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( 2o ·o suc 𝐴 ) ) |
| 32 | 20 31 | eqeltrrd | ⊢ ( 𝐴 ∈ On → suc ( 2o ·o 𝐴 ) ∈ ( 2o ·o suc 𝐴 ) ) |
| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → suc ( 2o ·o 𝐴 ) ∈ ( 2o ·o suc 𝐴 ) ) |
| 34 | 16 33 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) |
| 35 | onsuc | ⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) | |
| 36 | omord | ⊢ ( ( 𝐵 ∈ On ∧ suc 𝐴 ∈ On ∧ 2o ∈ On ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) | |
| 37 | 10 36 | mp3an3 | ⊢ ( ( 𝐵 ∈ On ∧ suc 𝐴 ∈ On ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
| 38 | 35 37 | sylan2 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
| 39 | 38 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
| 41 | 34 40 | mpbird | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ) |
| 42 | 41 | simpld | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → 𝐵 ∈ suc 𝐴 ) |
| 43 | 42 | ex | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → 𝐵 ∈ suc 𝐴 ) ) |
| 44 | 15 43 | jcad | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
| 45 | 44 | 3adant3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
| 46 | 5 45 | sylbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
| 47 | 2 46 | mtod | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ¬ suc 𝐶 = ( 2o ·o 𝐵 ) ) |