This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inference based on modus ponens. (Contributed by NM, 30-Dec-2004) (Proof shortened by Wolf Lammen, 7-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpanlr1.1 | ⊢ 𝜓 | |
| mpanlr1.2 | ⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | mpanlr1 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanlr1.1 | ⊢ 𝜓 | |
| 2 | mpanlr1.2 | ⊢ ( ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ∧ 𝜃 ) → 𝜏 ) | |
| 3 | 1 | jctl | ⊢ ( 𝜒 → ( 𝜓 ∧ 𝜒 ) ) |
| 4 | 3 2 | sylanl2 | ⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |