This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law for ordinal exponentiation. Proposition 8.33 of TakeutiZaring p. 67. (Contributed by NM, 5-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oeordi | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = suc 𝐴 → ( 𝐶 ↑o 𝑥 ) = ( 𝐶 ↑o suc 𝐴 ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑥 = suc 𝐴 → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑥 = suc 𝐴 → ( ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐶 ↑o 𝑥 ) = ( 𝐶 ↑o 𝑦 ) ) | |
| 5 | 4 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐶 ↑o 𝑥 ) = ( 𝐶 ↑o suc 𝑦 ) ) | |
| 8 | 7 | eleq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐶 ↑o 𝑥 ) = ( 𝐶 ↑o 𝐵 ) ) | |
| 11 | 10 | eleq2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) ) |
| 13 | eldifi | ⊢ ( 𝐶 ∈ ( On ∖ 2o ) → 𝐶 ∈ On ) | |
| 14 | oecl | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o 𝐴 ) ∈ On ) | |
| 15 | 13 14 | sylan | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o 𝐴 ) ∈ On ) |
| 16 | om1 | ⊢ ( ( 𝐶 ↑o 𝐴 ) ∈ On → ( ( 𝐶 ↑o 𝐴 ) ·o 1o ) = ( 𝐶 ↑o 𝐴 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( ( 𝐶 ↑o 𝐴 ) ·o 1o ) = ( 𝐶 ↑o 𝐴 ) ) |
| 18 | ondif2 | ⊢ ( 𝐶 ∈ ( On ∖ 2o ) ↔ ( 𝐶 ∈ On ∧ 1o ∈ 𝐶 ) ) | |
| 19 | 18 | simprbi | ⊢ ( 𝐶 ∈ ( On ∖ 2o ) → 1o ∈ 𝐶 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → 1o ∈ 𝐶 ) |
| 21 | 13 | adantr | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → 𝐶 ∈ On ) |
| 22 | simpr | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → 𝐴 ∈ On ) | |
| 23 | dif20el | ⊢ ( 𝐶 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐶 ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ∅ ∈ 𝐶 ) |
| 25 | oen0 | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ∅ ∈ ( 𝐶 ↑o 𝐴 ) ) | |
| 26 | 21 22 24 25 | syl21anc | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ∅ ∈ ( 𝐶 ↑o 𝐴 ) ) |
| 27 | omordi | ⊢ ( ( ( 𝐶 ∈ On ∧ ( 𝐶 ↑o 𝐴 ) ∈ On ) ∧ ∅ ∈ ( 𝐶 ↑o 𝐴 ) ) → ( 1o ∈ 𝐶 → ( ( 𝐶 ↑o 𝐴 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) ) | |
| 28 | 21 15 26 27 | syl21anc | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( 1o ∈ 𝐶 → ( ( 𝐶 ↑o 𝐴 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) ) |
| 29 | 20 28 | mpd | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( ( 𝐶 ↑o 𝐴 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) |
| 30 | 17 29 | eqeltrrd | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o 𝐴 ) ∈ ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) |
| 31 | oesuc | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o suc 𝐴 ) = ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) | |
| 32 | 13 31 | sylan | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o suc 𝐴 ) = ( ( 𝐶 ↑o 𝐴 ) ·o 𝐶 ) ) |
| 33 | 30 32 | eleqtrrd | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝐴 ∈ On ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) |
| 34 | 33 | expcom | ⊢ ( 𝐴 ∈ On → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) |
| 35 | oecl | ⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o 𝑦 ) ∈ On ) | |
| 36 | 13 35 | sylan | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o 𝑦 ) ∈ On ) |
| 37 | om1 | ⊢ ( ( 𝐶 ↑o 𝑦 ) ∈ On → ( ( 𝐶 ↑o 𝑦 ) ·o 1o ) = ( 𝐶 ↑o 𝑦 ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( ( 𝐶 ↑o 𝑦 ) ·o 1o ) = ( 𝐶 ↑o 𝑦 ) ) |
| 39 | 19 | adantr | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → 1o ∈ 𝐶 ) |
| 40 | 13 | adantr | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → 𝐶 ∈ On ) |
| 41 | simpr | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → 𝑦 ∈ On ) | |
| 42 | 23 | adantr | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ∅ ∈ 𝐶 ) |
| 43 | oen0 | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) ∧ ∅ ∈ 𝐶 ) → ∅ ∈ ( 𝐶 ↑o 𝑦 ) ) | |
| 44 | 40 41 42 43 | syl21anc | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ∅ ∈ ( 𝐶 ↑o 𝑦 ) ) |
| 45 | omordi | ⊢ ( ( ( 𝐶 ∈ On ∧ ( 𝐶 ↑o 𝑦 ) ∈ On ) ∧ ∅ ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 1o ∈ 𝐶 → ( ( 𝐶 ↑o 𝑦 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) ) | |
| 46 | 40 36 44 45 | syl21anc | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 1o ∈ 𝐶 → ( ( 𝐶 ↑o 𝑦 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) ) |
| 47 | 39 46 | mpd | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( ( 𝐶 ↑o 𝑦 ) ·o 1o ) ∈ ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) |
| 48 | 38 47 | eqeltrrd | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o 𝑦 ) ∈ ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) |
| 49 | oesuc | ⊢ ( ( 𝐶 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o suc 𝑦 ) = ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) | |
| 50 | 13 49 | sylan | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o suc 𝑦 ) = ( ( 𝐶 ↑o 𝑦 ) ·o 𝐶 ) ) |
| 51 | 48 50 | eleqtrrd | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o 𝑦 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) |
| 52 | onsuc | ⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) | |
| 53 | oecl | ⊢ ( ( 𝐶 ∈ On ∧ suc 𝑦 ∈ On ) → ( 𝐶 ↑o suc 𝑦 ) ∈ On ) | |
| 54 | 13 52 53 | syl2an | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( 𝐶 ↑o suc 𝑦 ) ∈ On ) |
| 55 | ontr1 | ⊢ ( ( 𝐶 ↑o suc 𝑦 ) ∈ On → ( ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ∧ ( 𝐶 ↑o 𝑦 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) | |
| 56 | 54 55 | syl | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ∧ ( 𝐶 ↑o 𝑦 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) |
| 57 | 51 56 | mpan2d | ⊢ ( ( 𝐶 ∈ ( On ∖ 2o ) ∧ 𝑦 ∈ On ) → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) |
| 58 | 57 | expcom | ⊢ ( 𝑦 ∈ On → ( 𝐶 ∈ ( On ∖ 2o ) → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ 𝑦 ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) ) |
| 60 | 59 | a2d | ⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ 𝑦 ) → ( ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝑦 ) ) ) ) |
| 61 | bi2.04 | ⊢ ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ) | |
| 62 | 61 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ) |
| 63 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ) | |
| 64 | 62 63 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ↔ ( 𝐶 ∈ ( On ∖ 2o ) → ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) ) |
| 65 | limsuc | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥 ) ) | |
| 66 | 65 | biimpa | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → suc 𝐴 ∈ 𝑥 ) |
| 67 | elex | ⊢ ( suc 𝐴 ∈ 𝑥 → suc 𝐴 ∈ V ) | |
| 68 | sucexb | ⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) | |
| 69 | sucidg | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ suc 𝐴 ) | |
| 70 | 68 69 | sylbir | ⊢ ( suc 𝐴 ∈ V → 𝐴 ∈ suc 𝐴 ) |
| 71 | 67 70 | syl | ⊢ ( suc 𝐴 ∈ 𝑥 → 𝐴 ∈ suc 𝐴 ) |
| 72 | eleq2 | ⊢ ( 𝑦 = suc 𝐴 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ suc 𝐴 ) ) | |
| 73 | oveq2 | ⊢ ( 𝑦 = suc 𝐴 → ( 𝐶 ↑o 𝑦 ) = ( 𝐶 ↑o suc 𝐴 ) ) | |
| 74 | 73 | eleq2d | ⊢ ( 𝑦 = suc 𝐴 → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) |
| 75 | 72 74 | imbi12d | ⊢ ( 𝑦 = suc 𝐴 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ↔ ( 𝐴 ∈ suc 𝐴 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) ) |
| 76 | 75 | rspcv | ⊢ ( suc 𝐴 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐴 ∈ suc 𝐴 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) ) |
| 77 | 71 76 | mpid | ⊢ ( suc 𝐴 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) |
| 78 | 77 | anc2li | ⊢ ( suc 𝐴 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( suc 𝐴 ∈ 𝑥 ∧ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) ) ) |
| 79 | 73 | eliuni | ⊢ ( ( suc 𝐴 ∈ 𝑥 ∧ ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o suc 𝐴 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) |
| 80 | 78 79 | syl6 | ⊢ ( suc 𝐴 ∈ 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) ) |
| 81 | 66 80 | syl | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) ) |
| 82 | 81 | adantr | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) ) |
| 83 | 13 | adantl | ⊢ ( ( Lim 𝑥 ∧ 𝐶 ∈ ( On ∖ 2o ) ) → 𝐶 ∈ On ) |
| 84 | simpl | ⊢ ( ( Lim 𝑥 ∧ 𝐶 ∈ ( On ∖ 2o ) ) → Lim 𝑥 ) | |
| 85 | 23 | adantl | ⊢ ( ( Lim 𝑥 ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ∅ ∈ 𝐶 ) |
| 86 | vex | ⊢ 𝑥 ∈ V | |
| 87 | oelim | ⊢ ( ( ( 𝐶 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) | |
| 88 | 86 87 | mpanlr1 | ⊢ ( ( ( 𝐶 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) |
| 89 | 83 84 85 88 | syl21anc | ⊢ ( ( Lim 𝑥 ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐶 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) |
| 90 | 89 | adantlr | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐶 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) |
| 91 | 90 | eleq2d | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ↔ ( 𝐶 ↑o 𝐴 ) ∈ ∪ 𝑦 ∈ 𝑥 ( 𝐶 ↑o 𝑦 ) ) ) |
| 92 | 82 91 | sylibrd | ⊢ ( ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ) |
| 93 | 92 | ex | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ) ) |
| 94 | 93 | a2d | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( ( 𝐶 ∈ ( On ∖ 2o ) → ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ) ) |
| 95 | 64 94 | biimtrid | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑦 ) ) ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝑥 ) ) ) ) |
| 96 | 3 6 9 12 34 60 95 | tfindsg2 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 ∈ ( On ∖ 2o ) → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) |
| 97 | 96 | impancom | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ ( On ∖ 2o ) ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ↑o 𝐴 ) ∈ ( 𝐶 ↑o 𝐵 ) ) ) |