This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odadd1.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| odadd1.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| odadd1.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | odadd1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odadd1.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 2 | odadd1.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | odadd1.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 5 | 2 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 7 | 2 1 | odcl | ⊢ ( ( 𝐴 + 𝐵 ) ∈ 𝑋 → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 8 | 6 7 | syl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 9 | 8 | nn0zd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
| 10 | 2 1 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 12 | 11 | nn0zd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 13 | 2 1 | odcl | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝑂 ‘ 𝐵 ) ∈ ℕ0 ) |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℕ0 ) |
| 15 | 14 | nn0zd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) |
| 16 | 12 15 | gcdcld | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℕ0 ) |
| 17 | 16 | nn0zd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 18 | 9 17 | zmulcld | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 20 | dvds0 | ⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ 0 ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ 0 ) |
| 22 | gcdeq0 | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ↔ ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ ( 𝑂 ‘ 𝐵 ) = 0 ) ) ) | |
| 23 | 12 15 22 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ↔ ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ ( 𝑂 ‘ 𝐵 ) = 0 ) ) ) |
| 24 | 23 | biimpa | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ ( 𝑂 ‘ 𝐵 ) = 0 ) ) |
| 25 | oveq12 | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ ( 𝑂 ‘ 𝐵 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) = ( 0 · 0 ) ) | |
| 26 | 0cn | ⊢ 0 ∈ ℂ | |
| 27 | 26 | mul01i | ⊢ ( 0 · 0 ) = 0 |
| 28 | 25 27 | eqtrdi | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) = 0 ∧ ( 𝑂 ‘ 𝐵 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) = 0 ) |
| 29 | 24 28 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) = 0 ) |
| 30 | 21 29 | breqtrrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 31 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐺 ∈ Abel ) | |
| 32 | 17 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 33 | 12 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 34 | 15 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) |
| 35 | gcddvds | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) ) | |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) ) |
| 37 | 36 | simpld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 38 | 32 33 34 37 | dvdsmultr1d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 39 | simpr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) | |
| 40 | 33 34 | zmulcld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 41 | dvdsval2 | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ∧ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) | |
| 42 | 32 39 40 41 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 43 | 38 42 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 44 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐴 ∈ 𝑋 ) | |
| 45 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐵 ∈ 𝑋 ) | |
| 46 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 47 | 2 46 3 | mulgdi | ⊢ ( ( 𝐺 ∈ Abel ∧ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 48 | 31 43 44 45 47 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 49 | 36 | simprd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) |
| 50 | dvdsval2 | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) | |
| 51 | 32 39 34 50 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 52 | 49 51 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 53 | dvdsmul1 | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) | |
| 54 | 33 52 53 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 55 | 33 | zcnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
| 56 | 34 | zcnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℂ ) |
| 57 | 32 | zcnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℂ ) |
| 58 | 55 56 57 39 | divassd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 59 | 54 58 | breqtrrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 60 | 31 4 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐺 ∈ Grp ) |
| 61 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 62 | 2 1 46 61 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 63 | 60 44 43 62 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 64 | 59 63 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 65 | dvdsval2 | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) | |
| 66 | 32 39 33 65 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 67 | 37 66 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 68 | dvdsmul1 | ⊢ ( ( ( 𝑂 ‘ 𝐵 ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ 𝐵 ) · ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) | |
| 69 | 34 67 68 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ 𝐵 ) · ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 70 | 55 56 | mulcomd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) = ( ( 𝑂 ‘ 𝐵 ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 71 | 70 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( ( 𝑂 ‘ 𝐵 ) · ( 𝑂 ‘ 𝐴 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 72 | 56 55 57 39 | divassd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐵 ) · ( 𝑂 ‘ 𝐴 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ 𝐵 ) · ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 73 | 71 72 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ 𝐵 ) · ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 74 | 69 73 | breqtrrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 75 | 2 1 46 61 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 76 | 60 45 43 75 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 77 | 74 76 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) |
| 78 | 64 77 | oveq12d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) = ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) ) |
| 79 | 2 61 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 80 | 2 3 61 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 81 | 60 79 80 | syl2anc2 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 82 | 48 78 81 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) |
| 83 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 84 | 2 1 46 61 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝐵 ) ∈ 𝑋 ∧ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 85 | 60 83 43 84 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 86 | 82 85 | mpbird | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 87 | 9 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
| 88 | dvdsmulcr | ⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) | |
| 89 | 87 43 32 39 88 | syl112anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 90 | 86 89 | mpbird | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 91 | 40 | zcnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℂ ) |
| 92 | 91 57 39 | divcan1d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 93 | 90 92 | breqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 94 | 30 93 | pm2.61dane | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |