This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odadd1.1 | |- O = ( od ` G ) |
|
| odadd1.2 | |- X = ( Base ` G ) |
||
| odadd1.3 | |- .+ = ( +g ` G ) |
||
| Assertion | odadd1 | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odadd1.1 | |- O = ( od ` G ) |
|
| 2 | odadd1.2 | |- X = ( Base ` G ) |
|
| 3 | odadd1.3 | |- .+ = ( +g ` G ) |
|
| 4 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 5 | 2 3 | grpcl | |- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
| 6 | 4 5 | syl3an1 | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
| 7 | 2 1 | odcl | |- ( ( A .+ B ) e. X -> ( O ` ( A .+ B ) ) e. NN0 ) |
| 8 | 6 7 | syl | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` ( A .+ B ) ) e. NN0 ) |
| 9 | 8 | nn0zd | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` ( A .+ B ) ) e. ZZ ) |
| 10 | 2 1 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 11 | 10 | 3ad2ant2 | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` A ) e. NN0 ) |
| 12 | 11 | nn0zd | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` A ) e. ZZ ) |
| 13 | 2 1 | odcl | |- ( B e. X -> ( O ` B ) e. NN0 ) |
| 14 | 13 | 3ad2ant3 | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` B ) e. NN0 ) |
| 15 | 14 | nn0zd | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( O ` B ) e. ZZ ) |
| 16 | 12 15 | gcdcld | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) gcd ( O ` B ) ) e. NN0 ) |
| 17 | 16 | nn0zd | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) gcd ( O ` B ) ) e. ZZ ) |
| 18 | 9 17 | zmulcld | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) |
| 19 | 18 | adantr | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) |
| 20 | dvds0 | |- ( ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || 0 ) |
|
| 21 | 19 20 | syl | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || 0 ) |
| 22 | gcdeq0 | |- ( ( ( O ` A ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) = 0 <-> ( ( O ` A ) = 0 /\ ( O ` B ) = 0 ) ) ) |
|
| 23 | 12 15 22 | syl2anc | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( ( O ` A ) gcd ( O ` B ) ) = 0 <-> ( ( O ` A ) = 0 /\ ( O ` B ) = 0 ) ) ) |
| 24 | 23 | biimpa | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) = 0 /\ ( O ` B ) = 0 ) ) |
| 25 | oveq12 | |- ( ( ( O ` A ) = 0 /\ ( O ` B ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) = ( 0 x. 0 ) ) |
|
| 26 | 0cn | |- 0 e. CC |
|
| 27 | 26 | mul01i | |- ( 0 x. 0 ) = 0 |
| 28 | 25 27 | eqtrdi | |- ( ( ( O ` A ) = 0 /\ ( O ` B ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) = 0 ) |
| 29 | 24 28 | syl | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` A ) x. ( O ` B ) ) = 0 ) |
| 30 | 21 29 | breqtrrd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
| 31 | simpl1 | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> G e. Abel ) |
|
| 32 | 17 | adantr | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) e. ZZ ) |
| 33 | 12 | adantr | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) e. ZZ ) |
| 34 | 15 | adantr | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) e. ZZ ) |
| 35 | gcddvds | |- ( ( ( O ` A ) e. ZZ /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) /\ ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) ) |
|
| 36 | 33 34 35 | syl2anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) /\ ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) ) |
| 37 | 36 | simpld | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) ) |
| 38 | 32 33 34 37 | dvdsmultr1d | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
| 39 | simpr | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) |
|
| 40 | 33 34 | zmulcld | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) x. ( O ` B ) ) e. ZZ ) |
| 41 | dvdsval2 | |- ( ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 /\ ( ( O ` A ) x. ( O ` B ) ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( ( O ` A ) x. ( O ` B ) ) <-> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) |
|
| 42 | 32 39 40 41 | syl3anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( ( O ` A ) x. ( O ` B ) ) <-> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) |
| 43 | 38 42 | mpbid | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) |
| 44 | simpl2 | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> A e. X ) |
|
| 45 | simpl3 | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> B e. X ) |
|
| 46 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 47 | 2 46 3 | mulgdi | |- ( ( G e. Abel /\ ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ A e. X /\ B e. X ) ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) .+ ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) ) ) |
| 48 | 31 43 44 45 47 | syl13anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) ( A .+ B ) ) = ( ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) .+ ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) ) ) |
| 49 | 36 | simprd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) ) |
| 50 | dvdsval2 | |- ( ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 /\ ( O ` B ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) |
|
| 51 | 32 39 34 50 | syl3anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` B ) <-> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) |
| 52 | 49 51 | mpbid | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) |
| 53 | dvdsmul1 | |- ( ( ( O ` A ) e. ZZ /\ ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) -> ( O ` A ) || ( ( O ` A ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
|
| 54 | 33 52 53 | syl2anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( O ` A ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
| 55 | 33 | zcnd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) e. CC ) |
| 56 | 34 | zcnd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) e. CC ) |
| 57 | 32 | zcnd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) gcd ( O ` B ) ) e. CC ) |
| 58 | 55 56 57 39 | divassd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` A ) x. ( ( O ` B ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
| 59 | 54 58 | breqtrrd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` A ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 60 | 31 4 | syl | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> G e. Grp ) |
| 61 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 62 | 2 1 46 61 | oddvds | |- ( ( G e. Grp /\ A e. X /\ ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) -> ( ( O ` A ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) |
| 63 | 60 44 43 62 | syl3anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) = ( 0g ` G ) ) ) |
| 64 | 59 63 | mpbid | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) = ( 0g ` G ) ) |
| 65 | dvdsval2 | |- ( ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 /\ ( O ` A ) e. ZZ ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) |
|
| 66 | 32 39 33 65 | syl3anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) || ( O ` A ) <-> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) ) |
| 67 | 37 66 | mpbid | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) |
| 68 | dvdsmul1 | |- ( ( ( O ` B ) e. ZZ /\ ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) -> ( O ` B ) || ( ( O ` B ) x. ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
|
| 69 | 34 67 68 | syl2anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( O ` B ) x. ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
| 70 | 55 56 | mulcomd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) x. ( O ` B ) ) = ( ( O ` B ) x. ( O ` A ) ) ) |
| 71 | 70 | oveq1d | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( ( O ` B ) x. ( O ` A ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 72 | 56 55 57 39 | divassd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` B ) x. ( O ` A ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` B ) x. ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
| 73 | 71 72 | eqtrd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` B ) x. ( ( O ` A ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
| 74 | 69 73 | breqtrrd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` B ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 75 | 2 1 46 61 | oddvds | |- ( ( G e. Grp /\ B e. X /\ ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) -> ( ( O ` B ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) |
| 76 | 60 45 43 75 | syl3anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` B ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) = ( 0g ` G ) ) ) |
| 77 | 74 76 | mpbid | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) = ( 0g ` G ) ) |
| 78 | 64 77 | oveq12d | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) A ) .+ ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) B ) ) = ( ( 0g ` G ) .+ ( 0g ` G ) ) ) |
| 79 | 2 61 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 80 | 2 3 61 | grplid | |- ( ( G e. Grp /\ ( 0g ` G ) e. X ) -> ( ( 0g ` G ) .+ ( 0g ` G ) ) = ( 0g ` G ) ) |
| 81 | 60 79 80 | syl2anc2 | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( 0g ` G ) .+ ( 0g ` G ) ) = ( 0g ` G ) ) |
| 82 | 48 78 81 | 3eqtrd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) |
| 83 | 6 | adantr | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( A .+ B ) e. X ) |
| 84 | 2 1 46 61 | oddvds | |- ( ( G e. Grp /\ ( A .+ B ) e. X /\ ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ ) -> ( ( O ` ( A .+ B ) ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) |
| 85 | 60 83 43 84 | syl3anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ( .g ` G ) ( A .+ B ) ) = ( 0g ` G ) ) ) |
| 86 | 82 85 | mpbird | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 87 | 9 | adantr | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( O ` ( A .+ B ) ) e. ZZ ) |
| 88 | dvdsmulcr | |- ( ( ( O ` ( A .+ B ) ) e. ZZ /\ ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) e. ZZ /\ ( ( ( O ` A ) gcd ( O ` B ) ) e. ZZ /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) ) -> ( ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( O ` ( A .+ B ) ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
|
| 89 | 87 43 32 39 88 | syl112anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) <-> ( O ` ( A .+ B ) ) || ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) ) ) |
| 90 | 86 89 | mpbird | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) ) |
| 91 | 40 | zcnd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` A ) x. ( O ` B ) ) e. CC ) |
| 92 | 91 57 39 | divcan1d | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( ( ( O ` A ) x. ( O ` B ) ) / ( ( O ` A ) gcd ( O ` B ) ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |
| 93 | 90 92 | breqtrd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) =/= 0 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
| 94 | 30 93 | pm2.61dane | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |