This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction form of dvdsmultr1 . (Contributed by Stanislas Polu, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsmultr1d.1 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| dvdsmultr1d.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvdsmultr1d.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| dvdsmultr1d.4 | ⊢ ( 𝜑 → 𝐾 ∥ 𝑀 ) | ||
| Assertion | dvdsmultr1d | ⊢ ( 𝜑 → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsmultr1d.1 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 2 | dvdsmultr1d.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | dvdsmultr1d.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 4 | dvdsmultr1d.4 | ⊢ ( 𝜑 → 𝐾 ∥ 𝑀 ) | |
| 5 | dvdsmultr1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ 𝑀 → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑 → ( 𝐾 ∥ 𝑀 → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 7 | 4 6 | mpd | ⊢ ( 𝜑 → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) |