This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odadd1.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| odadd1.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| odadd1.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | odadd2 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odadd1.1 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 2 | odadd1.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | odadd1.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | 2 1 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 | 5 | nn0zd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 7 | 2 1 | odcl | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝑂 ‘ 𝐵 ) ∈ ℕ0 ) |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℕ0 ) |
| 9 | 8 | nn0zd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) |
| 10 | 6 9 | zmulcld | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 12 | dvds0 | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ 0 ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ 0 ) |
| 14 | simpr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) | |
| 15 | 14 | sq0id | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) = 0 ) |
| 16 | 15 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) = ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · 0 ) ) |
| 17 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 18 | 2 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 19 | 17 18 | syl3an1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 20 | 2 1 | odcl | ⊢ ( ( 𝐴 + 𝐵 ) ∈ 𝑋 → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 21 | 19 20 | syl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 22 | 21 | nn0zd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
| 24 | 23 | zcnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℂ ) |
| 25 | 24 | mul01d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · 0 ) = 0 ) |
| 26 | 16 25 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) = 0 ) |
| 27 | 13 26 | breqtrrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 28 | 6 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 29 | 9 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) |
| 30 | 28 29 | gcdcld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℕ0 ) |
| 31 | 30 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℂ ) |
| 32 | 31 | sqvald | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) = ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 33 | 32 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) = ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 34 | gcddvds | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) ) | |
| 35 | 28 29 34 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) ) |
| 36 | 35 | simpld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 37 | 30 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 38 | simpr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) | |
| 39 | dvdsval2 | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) | |
| 40 | 37 38 28 39 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 41 | 36 40 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 42 | 41 | zcnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 43 | 35 | simprd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ) |
| 44 | dvdsval2 | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) | |
| 45 | 37 38 29 44 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∥ ( 𝑂 ‘ 𝐵 ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) ) |
| 46 | 43 45 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ) |
| 47 | 46 | zcnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 48 | 42 31 47 31 | mul4d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 49 | 28 | zcnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
| 50 | 49 31 38 | divcan1d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 51 | 29 | zcnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∈ ℂ ) |
| 52 | 51 31 38 | divcan1d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( 𝑂 ‘ 𝐵 ) ) |
| 53 | 50 52 | oveq12d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 54 | 33 48 53 | 3eqtr2d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) = ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 55 | 22 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
| 56 | dvdsmul2 | ⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ) | |
| 57 | 55 28 56 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 58 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐺 ∈ Abel ) | |
| 59 | 55 29 | zmulcld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) |
| 60 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐴 ∈ 𝑋 ) | |
| 61 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐵 ∈ 𝑋 ) | |
| 62 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 63 | 2 62 3 | mulgdi | ⊢ ( ( 𝐺 ∈ Abel ∧ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 64 | 58 59 60 61 63 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 65 | dvdsmul2 | ⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) | |
| 66 | 55 29 65 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 67 | 58 17 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 𝐺 ∈ Grp ) |
| 68 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 69 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 70 | 67 61 59 69 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 71 | 66 70 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) |
| 72 | 71 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( 0g ‘ 𝐺 ) ) ) |
| 73 | 64 72 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( 0g ‘ 𝐺 ) ) ) |
| 74 | dvdsmul1 | ⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) | |
| 75 | 55 29 74 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 76 | 19 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 77 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝐵 ) ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 78 | 67 76 59 77 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 79 | 75 78 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) |
| 80 | 2 62 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ) |
| 81 | 67 59 60 80 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ) |
| 82 | 2 3 68 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ) → ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( 0g ‘ 𝐺 ) ) = ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) |
| 83 | 67 81 82 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( 0g ‘ 𝐺 ) ) = ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) |
| 84 | 73 79 83 | 3eqtr3rd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 85 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 86 | 67 60 59 85 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 87 | 84 86 | mpbird | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) |
| 88 | 55 28 | zmulcld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ) |
| 89 | dvdsgcd | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∧ ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) ) | |
| 90 | 28 88 59 89 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∧ ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 91 | 57 87 90 | mp2and | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 92 | 21 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ) |
| 93 | mulgcd | ⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℕ0 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐵 ) ∈ ℤ ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) | |
| 94 | 92 28 29 93 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 95 | 91 94 | breqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 96 | 50 95 | eqbrtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 97 | dvdsmulcr | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) | |
| 98 | 41 55 37 38 97 | syl112anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 99 | 96 98 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 100 | 2 62 3 | mulgdi | ⊢ ( ( 𝐺 ∈ Abel ∧ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 101 | 58 88 60 61 100 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 102 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 103 | 67 60 88 102 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 104 | 57 103 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 105 | 104 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐴 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) = ( ( 0g ‘ 𝐺 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 106 | 101 105 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( ( 0g ‘ 𝐺 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) ) |
| 107 | dvdsmul1 | ⊢ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ) | |
| 108 | 55 28 107 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 109 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 + 𝐵 ) ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 110 | 67 76 88 109 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 111 | 108 110 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) ( 𝐴 + 𝐵 ) ) = ( 0g ‘ 𝐺 ) ) |
| 112 | 2 62 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ∈ 𝑋 ) |
| 113 | 67 88 61 112 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ∈ 𝑋 ) |
| 114 | 2 3 68 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) = ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) |
| 115 | 67 113 114 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 0g ‘ 𝐺 ) + ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) = ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) ) |
| 116 | 106 111 115 | 3eqtr3rd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) |
| 117 | 2 1 62 68 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 118 | 67 61 88 117 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ( .g ‘ 𝐺 ) 𝐵 ) = ( 0g ‘ 𝐺 ) ) ) |
| 119 | 116 118 | mpbird | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ) |
| 120 | dvdsgcd | ⊢ ( ( ( 𝑂 ‘ 𝐵 ) ∈ ℤ ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ) → ( ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∧ ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) ) | |
| 121 | 29 88 59 120 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) ∧ ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) ) |
| 122 | 119 66 121 | mp2and | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐴 ) ) gcd ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 123 | 122 94 | breqtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 𝑂 ‘ 𝐵 ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 124 | 52 123 | eqbrtrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 125 | dvdsmulcr | ⊢ ( ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) ) → ( ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) | |
| 126 | 46 55 37 38 125 | syl112anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ↔ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 127 | 124 126 | mpbid | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 128 | 41 46 | gcdcld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∈ ℕ0 ) |
| 129 | 128 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∈ ℂ ) |
| 130 | 1cnd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → 1 ∈ ℂ ) | |
| 131 | 31 | mullidd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( 1 · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) |
| 132 | 50 52 | oveq12d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) |
| 133 | mulgcdr | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℕ0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) | |
| 134 | 41 46 30 133 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 135 | 131 132 134 | 3eqtr2rd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) = ( 1 · ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) |
| 136 | 129 130 31 38 135 | mulcan2ad | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = 1 ) |
| 137 | coprmdvds2 | ⊢ ( ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) ∧ ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) gcd ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) = 1 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∧ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) | |
| 138 | 41 46 55 136 137 | syl31anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∧ ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 139 | 99 127 138 | mp2and | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ) |
| 140 | 41 46 | zmulcld | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∈ ℤ ) |
| 141 | zsqcl | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ∈ ℤ → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℤ ) | |
| 142 | 37 141 | syl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℤ ) |
| 143 | dvdsmulc | ⊢ ( ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∈ ℤ ∧ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℤ ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) ) | |
| 144 | 140 55 142 143 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) ∥ ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) ) |
| 145 | 139 144 | mpd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) · ( ( 𝑂 ‘ 𝐵 ) / ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 146 | 54 145 | eqbrtrrd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ≠ 0 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 147 | 27 146 | pm2.61dane | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) · ( 𝑂 ‘ 𝐵 ) ) ∥ ( ( 𝑂 ‘ ( 𝐴 + 𝐵 ) ) · ( ( ( 𝑂 ‘ 𝐴 ) gcd ( 𝑂 ‘ 𝐵 ) ) ↑ 2 ) ) ) |