This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only multiples of A that are equal to the identity are the multiples of the order of A . (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | |
| 6 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℤ ) | |
| 7 | dvdsval3 | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) | |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) |
| 9 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐴 ∈ 𝑋 ) | |
| 10 | 1 4 3 | mulg0 | ⊢ ( 𝐴 ∈ 𝑋 → ( 0 · 𝐴 ) = 0 ) |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 0 · 𝐴 ) = 0 ) |
| 12 | oveq1 | ⊢ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 0 · 𝐴 ) ) | |
| 13 | 12 | eqeq1d | ⊢ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 → ( ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ↔ ( 0 · 𝐴 ) = 0 ) ) |
| 14 | 11 13 | syl5ibrcom | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) ) |
| 15 | 6 | zred | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 16 | 5 | nnrpd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) |
| 17 | modlt | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
| 19 | 6 5 | zmodcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 20 | 19 | nn0red | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℝ ) |
| 21 | 5 | nnred | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 22 | 20 21 | ltnled | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ↔ ¬ ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) ) |
| 23 | 18 22 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ¬ ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
| 24 | 1 2 3 4 | odlem2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) ) |
| 25 | elfzle2 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
| 27 | 26 | 3com23 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
| 28 | 27 | 3expia | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) ) |
| 29 | 28 | con3d | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) → ( ¬ ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) → ¬ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ) ) |
| 30 | 29 | impancom | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ¬ ( 𝑂 ‘ 𝐴 ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) → ( ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 → ¬ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ) ) |
| 31 | 9 23 30 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 → ¬ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ) ) |
| 32 | elnn0 | ⊢ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ↔ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ∨ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) | |
| 33 | 19 32 | sylib | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ ∨ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) |
| 34 | 33 | ord | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ¬ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) |
| 35 | 31 34 | syld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ) ) |
| 36 | 14 35 | impbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = 0 ↔ ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ) ) |
| 37 | 1 2 3 4 | odmod | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
| 38 | 37 | eqeq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 39 | 8 36 38 | 3bitrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 40 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) = 0 ) | |
| 41 | 40 | breq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
| 42 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝑁 ∈ ℤ ) | |
| 43 | 0dvds | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) | |
| 44 | 42 43 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
| 45 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ 𝑋 ) | |
| 46 | 45 10 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 0 · 𝐴 ) = 0 ) |
| 47 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) | |
| 48 | 47 | eqeq1d | ⊢ ( 𝑁 = 0 → ( ( 𝑁 · 𝐴 ) = 0 ↔ ( 0 · 𝐴 ) = 0 ) ) |
| 49 | 46 48 | syl5ibrcom | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑁 = 0 → ( 𝑁 · 𝐴 ) = 0 ) ) |
| 50 | 1 2 3 4 | odnncl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| 51 | 50 | nnne0d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ ( 𝑁 · 𝐴 ) = 0 ) ) → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) |
| 52 | 51 | expr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ( ( 𝑁 · 𝐴 ) = 0 → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
| 53 | 52 | impancom | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑁 ≠ 0 → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
| 54 | 53 | necon4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → 𝑁 = 0 ) ) |
| 55 | 54 | impancom | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑁 · 𝐴 ) = 0 → 𝑁 = 0 ) ) |
| 56 | 49 55 | impbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑁 = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 57 | 41 44 56 | 3bitrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 58 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 59 | 58 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 60 | elnn0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) | |
| 61 | 59 60 | sylib | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 62 | 39 57 61 | mpjaodan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |