This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple of a sum. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgdi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgdi.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgdi.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mulgdi | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgdi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgdi.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgdi.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝐺 ∈ CMnd ) |
| 6 | simpr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) | |
| 7 | simplr2 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | simplr3 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑌 ∈ 𝐵 ) | |
| 9 | 1 2 3 | mulgnn0di | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 10 | 5 6 7 8 9 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 11 | 4 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → 𝐺 ∈ CMnd ) |
| 12 | simpr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → - 𝑀 ∈ ℕ0 ) | |
| 13 | simpr2 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 15 | simpr3 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → 𝑌 ∈ 𝐵 ) |
| 17 | 1 2 3 | mulgnn0di | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( - 𝑀 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) ) |
| 18 | 11 12 14 16 17 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) ) |
| 19 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 21 | simpr1 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑀 ∈ ℤ ) | |
| 22 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 23 | 20 13 15 22 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 24 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 25 | 1 2 24 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) |
| 26 | 20 21 23 25 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( - 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) |
| 28 | 1 2 24 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑀 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) |
| 29 | 20 21 13 28 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) |
| 30 | 1 2 24 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ) → ( - 𝑀 · 𝑌 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) |
| 31 | 20 21 15 30 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( - 𝑀 · 𝑌 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) |
| 32 | 29 31 | oveq12d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( - 𝑀 · 𝑋 ) + ( - 𝑀 · 𝑌 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 34 | 18 27 33 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 35 | simpl | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) | |
| 36 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 37 | 20 21 13 36 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 38 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 · 𝑌 ) ∈ 𝐵 ) |
| 39 | 20 21 15 38 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · 𝑌 ) ∈ 𝐵 ) |
| 40 | 1 3 24 | ablinvadd | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑀 · 𝑌 ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 41 | 35 37 39 40 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑌 ) ) ) ) |
| 43 | 34 42 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) = ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) |
| 44 | 43 | fveq2d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) = ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) ) |
| 45 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) |
| 46 | 20 21 23 45 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) |
| 48 | 1 24 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) = ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) |
| 49 | 20 47 48 | syl2an2r | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) ) = ( 𝑀 · ( 𝑋 + 𝑌 ) ) ) |
| 50 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑀 · 𝑌 ) ∈ 𝐵 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) |
| 51 | 20 37 39 50 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) |
| 52 | 51 | adantr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) |
| 53 | 1 24 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 54 | 20 52 53 | syl2an2r | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 55 | 44 49 54 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ - 𝑀 ∈ ℕ0 ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |
| 56 | elznn0 | ⊢ ( 𝑀 ∈ ℤ ↔ ( 𝑀 ∈ ℝ ∧ ( 𝑀 ∈ ℕ0 ∨ - 𝑀 ∈ ℕ0 ) ) ) | |
| 57 | 56 | simprbi | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ∈ ℕ0 ∨ - 𝑀 ∈ ℕ0 ) ) |
| 58 | 21 57 | syl | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 ∈ ℕ0 ∨ - 𝑀 ∈ ℕ0 ) ) |
| 59 | 10 55 58 | mpjaodan | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑀 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑀 · 𝑌 ) ) ) |