This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left addition by a constant is a bijection from ordinals to ordinals greater than the constant. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaf1o | ⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ On ↦ ( 𝐴 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oacl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +o 𝑥 ) ∈ On ) | |
| 2 | oaword1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ) | |
| 3 | ontri1 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐴 +o 𝑥 ) ∈ On ) → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) | |
| 4 | 1 3 | syldan | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ⊆ ( 𝐴 +o 𝑥 ) ↔ ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) ) |
| 5 | 2 4 | mpbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ¬ ( 𝐴 +o 𝑥 ) ∈ 𝐴 ) |
| 6 | 1 5 | eldifd | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 +o 𝑥 ) ∈ ( On ∖ 𝐴 ) ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝐴 ∈ On → ∀ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) ∈ ( On ∖ 𝐴 ) ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → 𝐴 ∈ On ) | |
| 9 | eldifi | ⊢ ( 𝑦 ∈ ( On ∖ 𝐴 ) → 𝑦 ∈ On ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → 𝑦 ∈ On ) |
| 11 | eldifn | ⊢ ( 𝑦 ∈ ( On ∖ 𝐴 ) → ¬ 𝑦 ∈ 𝐴 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → ¬ 𝑦 ∈ 𝐴 ) |
| 13 | ontri1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴 ) ) | |
| 14 | 10 13 | syldan | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → ( 𝐴 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝐴 ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → 𝐴 ⊆ 𝑦 ) |
| 16 | oawordeu | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐴 ⊆ 𝑦 ) → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝑦 ) | |
| 17 | 8 10 15 16 | syl21anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝑦 ) |
| 18 | eqcom | ⊢ ( ( 𝐴 +o 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝐴 +o 𝑥 ) ) | |
| 19 | 18 | reubii | ⊢ ( ∃! 𝑥 ∈ On ( 𝐴 +o 𝑥 ) = 𝑦 ↔ ∃! 𝑥 ∈ On 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 20 | 17 19 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ( On ∖ 𝐴 ) ) → ∃! 𝑥 ∈ On 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 21 | 20 | ralrimiva | ⊢ ( 𝐴 ∈ On → ∀ 𝑦 ∈ ( On ∖ 𝐴 ) ∃! 𝑥 ∈ On 𝑦 = ( 𝐴 +o 𝑥 ) ) |
| 22 | eqid | ⊢ ( 𝑥 ∈ On ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ On ↦ ( 𝐴 +o 𝑥 ) ) | |
| 23 | 22 | f1ompt | ⊢ ( ( 𝑥 ∈ On ↦ ( 𝐴 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐴 ) ↔ ( ∀ 𝑥 ∈ On ( 𝐴 +o 𝑥 ) ∈ ( On ∖ 𝐴 ) ∧ ∀ 𝑦 ∈ ( On ∖ 𝐴 ) ∃! 𝑥 ∈ On 𝑦 = ( 𝐴 +o 𝑥 ) ) ) |
| 24 | 7 21 23 | sylanbrc | ⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ On ↦ ( 𝐴 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐴 ) ) |