This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004) (Proof shortened by Mario Carneiro, 17-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunun | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.43 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∨ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) | |
| 2 | elun | ⊢ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) | |
| 3 | 2 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) |
| 4 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
| 5 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) | |
| 6 | 4 5 | orbi12i | ⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∨ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
| 7 | 1 3 6 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 8 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) | |
| 9 | elun | ⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) ↔ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 11 | 10 | eqriv | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ 𝐴 𝐶 ) |