This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in Adamek p. 103. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nzerooringczr.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| nzerooringczr.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | ||
| nzerooringczr.z | ⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) | ||
| nzerooringczr.e | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| nzerooringczr.i | ⊢ ( 𝜑 → ℤring ∈ 𝑈 ) | ||
| Assertion | nzerooringczr | ⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nzerooringczr.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | nzerooringczr.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 3 | nzerooringczr.z | ⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) | |
| 4 | nzerooringczr.e | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 5 | nzerooringczr.i | ⊢ ( 𝜑 → ℤring ∈ 𝑈 ) | |
| 6 | ax-1 | ⊢ ( ( ZeroO ‘ 𝐶 ) = ∅ → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) | |
| 7 | neq0 | ⊢ ( ¬ ( ZeroO ‘ 𝐶 ) = ∅ ↔ ∃ ℎ ℎ ∈ ( ZeroO ‘ 𝐶 ) ) | |
| 8 | 2 | ringccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 | iszeroi | ⊢ ( ( 𝐶 ∈ Cat ∧ ℎ ∈ ( ZeroO ‘ 𝐶 ) ) → ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( ZeroO ‘ 𝐶 ) ) → ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| 12 | 1 2 3 4 | zrtermoringc | ⊢ ( 𝜑 → 𝑍 ∈ ( TermO ‘ 𝐶 ) ) |
| 13 | 1 5 2 | irinitoringc | ⊢ ( 𝜑 → ℤring ∈ ( InitO ‘ 𝐶 ) ) |
| 14 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 15 | simplr | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ℎ ∈ ( InitO ‘ 𝐶 ) ) | |
| 16 | simpr | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ℤring ∈ ( InitO ‘ 𝐶 ) ) | |
| 17 | 14 15 16 | initoeu1w | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring ) |
| 18 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 19 | simpr | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → 𝑍 ∈ ( TermO ‘ 𝐶 ) ) | |
| 20 | simplr | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → ℎ ∈ ( TermO ‘ 𝐶 ) ) | |
| 21 | 18 19 20 | termoeu1w | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ ) |
| 22 | cictr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ ∧ ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring ) → 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℤring ) | |
| 23 | 9 22 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ ∧ ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring ) → 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℤring ) |
| 24 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 25 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 26 | 3 | eldifad | ⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 27 | 4 26 | elind | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝑈 ∩ Ring ) ) |
| 28 | 2 25 1 | ringcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) ) |
| 29 | 27 28 | eleqtrrd | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 30 | zringring | ⊢ ℤring ∈ Ring | |
| 31 | 30 | a1i | ⊢ ( 𝜑 → ℤring ∈ Ring ) |
| 32 | 5 31 | elind | ⊢ ( 𝜑 → ℤring ∈ ( 𝑈 ∩ Ring ) ) |
| 33 | 32 28 | eleqtrrd | ⊢ ( 𝜑 → ℤring ∈ ( Base ‘ 𝐶 ) ) |
| 34 | 24 25 9 29 33 | cic | ⊢ ( 𝜑 → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℤring ↔ ∃ 𝑓 𝑓 ∈ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ) ) |
| 35 | n0 | ⊢ ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ) | |
| 36 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 37 | 25 36 24 9 29 33 | isohom | ⊢ ( 𝜑 → ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ) |
| 38 | ssn0 | ⊢ ( ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ∧ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ ) → ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ≠ ∅ ) | |
| 39 | 2 25 1 36 29 33 | ringchom | ⊢ ( 𝜑 → ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) = ( 𝑍 RingHom ℤring ) ) |
| 40 | 39 | neeq1d | ⊢ ( 𝜑 → ( ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ≠ ∅ ↔ ( 𝑍 RingHom ℤring ) ≠ ∅ ) ) |
| 41 | zringnzr | ⊢ ℤring ∈ NzRing | |
| 42 | nrhmzr | ⊢ ( ( 𝑍 ∈ ( Ring ∖ NzRing ) ∧ ℤring ∈ NzRing ) → ( 𝑍 RingHom ℤring ) = ∅ ) | |
| 43 | 3 41 42 | sylancl | ⊢ ( 𝜑 → ( 𝑍 RingHom ℤring ) = ∅ ) |
| 44 | eqneqall | ⊢ ( ( 𝑍 RingHom ℤring ) = ∅ → ( ( 𝑍 RingHom ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) | |
| 45 | 43 44 | syl | ⊢ ( 𝜑 → ( ( 𝑍 RingHom ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 46 | 40 45 | sylbid | ⊢ ( 𝜑 → ( ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 47 | 38 46 | syl5com | ⊢ ( ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ∧ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 48 | 47 | expcom | ⊢ ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) |
| 49 | 48 | com13 | ⊢ ( 𝜑 → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) |
| 50 | 37 49 | mpd | ⊢ ( 𝜑 → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 51 | 35 50 | biimtrrid | ⊢ ( 𝜑 → ( ∃ 𝑓 𝑓 ∈ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 52 | 34 51 | sylbid | ⊢ ( 𝜑 → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 53 | 52 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ ∧ ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring ) → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 54 | 23 53 | mpd | ⊢ ( ( 𝜑 ∧ 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ ∧ ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring ) → ( ZeroO ‘ 𝐶 ) = ∅ ) |
| 55 | 54 | 3exp | ⊢ ( 𝜑 → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) |
| 56 | 55 | a1dd | ⊢ ( 𝜑 → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) |
| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) |
| 58 | 21 57 | mpd | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) |
| 59 | 58 | exp31 | ⊢ ( 𝜑 → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 60 | 59 | com34 | ⊢ ( 𝜑 → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 61 | 60 | com25 | ⊢ ( 𝜑 → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 63 | 17 62 | mpd | ⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) |
| 64 | 63 | ex | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 65 | 64 | com25 | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 66 | 65 | expimpd | ⊢ ( 𝜑 → ( ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 67 | 66 | com23 | ⊢ ( 𝜑 → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 68 | 67 | impd | ⊢ ( 𝜑 → ( ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) |
| 69 | 68 | com24 | ⊢ ( 𝜑 → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) |
| 70 | 13 69 | mpd | ⊢ ( 𝜑 → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) |
| 71 | 12 70 | mpd | ⊢ ( 𝜑 → ( ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( ZeroO ‘ 𝐶 ) ) → ( ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 73 | 11 72 | mpd | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( ZeroO ‘ 𝐶 ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) |
| 74 | 73 | expcom | ⊢ ( ℎ ∈ ( ZeroO ‘ 𝐶 ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 75 | 74 | exlimiv | ⊢ ( ∃ ℎ ℎ ∈ ( ZeroO ‘ 𝐶 ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 76 | 7 75 | sylbi | ⊢ ( ¬ ( ZeroO ‘ 𝐶 ) = ∅ → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 77 | 6 76 | pm2.61i | ⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) |