This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is transitive. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cictr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ∧ 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ciclcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) | |
| 2 | cicrcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ) |
| 4 | 3 | ex | ⊢ ( 𝐶 ∈ Cat → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 5 | cicrcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) → 𝑇 ∈ ( Base ‘ 𝐶 ) ) | |
| 6 | 5 | ex | ⊢ ( 𝐶 ∈ Cat → ( 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 → 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) |
| 7 | 4 6 | anim12d | ⊢ ( 𝐶 ∈ Cat → ( ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ∧ 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) → ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 8 | 7 | 3impib | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ∧ 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) → ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) |
| 9 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 11 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) | |
| 12 | simpll | ⊢ ( ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
| 14 | simplr | ⊢ ( ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
| 16 | 9 10 11 13 15 | cic | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ) |
| 17 | simprr | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑇 ∈ ( Base ‘ 𝐶 ) ) | |
| 18 | 9 10 11 15 17 | cic | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ↔ ∃ 𝑔 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ) ) |
| 19 | 16 18 | anbi12d | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ∧ 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ) ) ) |
| 20 | 11 | adantl | ⊢ ( ( ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ∧ 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ∧ ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) ) → 𝐶 ∈ Cat ) |
| 21 | 13 | adantl | ⊢ ( ( ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ∧ 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ∧ ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
| 22 | 17 | adantl | ⊢ ( ( ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ∧ 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ∧ ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) ) → 𝑇 ∈ ( Base ‘ 𝐶 ) ) |
| 23 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 24 | 15 | adantl | ⊢ ( ( ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ∧ 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ∧ ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
| 25 | simplr | ⊢ ( ( ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ∧ 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ∧ ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) ) → 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) | |
| 26 | simpll | ⊢ ( ( ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ∧ 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ∧ ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) ) → 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ) | |
| 27 | 10 23 9 20 21 24 22 25 26 | isoco | ⊢ ( ( ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ∧ 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ∧ ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) ) → ( 𝑔 ( 〈 𝑅 , 𝑆 〉 ( comp ‘ 𝐶 ) 𝑇 ) 𝑓 ) ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑇 ) ) |
| 28 | 9 10 20 21 22 27 | brcici | ⊢ ( ( ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ∧ 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) ∧ ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) |
| 29 | 28 | ex | ⊢ ( ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ∧ 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) → ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) |
| 30 | 29 | ex | ⊢ ( 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) → ( 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) → ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) ) |
| 31 | 30 | exlimiv | ⊢ ( ∃ 𝑔 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) → ( 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) → ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) ) |
| 32 | 31 | com12 | ⊢ ( 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) → ( ∃ 𝑔 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) → ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) ) |
| 33 | 32 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) → ( ∃ 𝑔 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) → ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) ) |
| 34 | 33 | imp | ⊢ ( ( ∃ 𝑓 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ) → ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) |
| 35 | 34 | com12 | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ∧ ∃ 𝑔 𝑔 ∈ ( 𝑆 ( Iso ‘ 𝐶 ) 𝑇 ) ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) |
| 36 | 19 35 | sylbid | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ∧ 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) |
| 37 | 36 | ex | ⊢ ( 𝐶 ∈ Cat → ( ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ∧ 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) ) |
| 38 | 37 | com23 | ⊢ ( 𝐶 ∈ Cat → ( ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ∧ 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) → ( ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) ) |
| 39 | 38 | 3impib | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ∧ 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) → ( ( ( 𝑅 ∈ ( Base ‘ 𝐶 ) ∧ 𝑆 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑇 ∈ ( Base ‘ 𝐶 ) ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) ) |
| 40 | 8 39 | mpd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ∧ 𝑆 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑇 ) |