This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iszeroi | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 3 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 4 | 1 2 3 | zerooval | ⊢ ( 𝐶 ∈ Cat → ( ZeroO ‘ 𝐶 ) = ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) |
| 5 | 4 | eleq2d | ⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ↔ 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ) ) |
| 6 | elin | ⊢ ( 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) ↔ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) | |
| 7 | initoo | ⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) | |
| 8 | 7 | adantrd | ⊢ ( 𝐶 ∈ Cat → ( ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
| 9 | 6 8 | biimtrid | ⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ( InitO ‘ 𝐶 ) ∩ ( TermO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
| 10 | 5 9 | sylbid | ⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) |
| 12 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) | |
| 13 | simpr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → 𝑂 ∈ ( Base ‘ 𝐶 ) ) | |
| 14 | 2 3 12 13 | iszeroo | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ↔ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| 15 | 14 | biimpd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑂 ∈ ( ZeroO ‘ 𝐶 ) → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| 16 | 15 | impancom | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) → ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| 17 | 11 16 | jcai | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑂 ∈ ( ZeroO ‘ 𝐶 ) ) → ( 𝑂 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑂 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑂 ∈ ( TermO ‘ 𝐶 ) ) ) ) |