This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isohom.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isohom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isohom.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| isohom.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| isohom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| isohom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | isohom | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isohom.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isohom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | isohom.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 4 | isohom.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | isohom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | isohom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 8 | 1 7 4 5 6 3 | isoval | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
| 9 | 1 7 4 5 6 2 | invss | ⊢ ( 𝜑 → ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) |
| 10 | dmss | ⊢ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) → dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ⊆ dom ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ⊆ dom ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) |
| 12 | 8 11 | eqsstrd | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) ⊆ dom ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) |
| 13 | dmxpss | ⊢ dom ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ⊆ ( 𝑋 𝐻 𝑌 ) | |
| 14 | 12 13 | sstrdi | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |