This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrtermoringc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| zrtermoringc.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | ||
| zrtermoringc.z | ⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) | ||
| zrtermoringc.e | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| Assertion | zrtermoringc | ⊢ ( 𝜑 → 𝑍 ∈ ( TermO ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrtermoringc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | zrtermoringc.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 3 | zrtermoringc.z | ⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) | |
| 4 | zrtermoringc.e | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | 2 5 1 | ringcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) ) |
| 7 | 6 | eleq2d | ⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) ↔ 𝑟 ∈ ( 𝑈 ∩ Ring ) ) ) |
| 8 | elin | ⊢ ( 𝑟 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Ring ) ) | |
| 9 | 8 | simprbi | ⊢ ( 𝑟 ∈ ( 𝑈 ∩ Ring ) → 𝑟 ∈ Ring ) |
| 10 | 7 9 | biimtrdi | ⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) → 𝑟 ∈ Ring ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ Ring ) |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝑟 ) = ( Base ‘ 𝑟 ) | |
| 14 | eqid | ⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) | |
| 15 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) | |
| 16 | 13 14 15 | c0rhm | ⊢ ( ( 𝑟 ∈ Ring ∧ 𝑍 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) |
| 17 | 11 12 16 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) |
| 18 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) | |
| 19 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑈 ∈ 𝑉 ) |
| 20 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ ( Base ‘ 𝐶 ) ) | |
| 22 | 3 | eldifad | ⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 23 | 4 22 | elind | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝑈 ∩ Ring ) ) |
| 24 | 23 6 | eleqtrrd | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 26 | 2 5 19 20 21 25 | ringchom | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) = ( 𝑟 RingHom 𝑍 ) ) |
| 27 | 26 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑟 RingHom 𝑍 ) = ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 28 | 27 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) |
| 29 | 28 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 30 | 26 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ↔ ℎ ∈ ( 𝑟 RingHom 𝑍 ) ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) | |
| 32 | 13 31 | rhmf | ⊢ ( ℎ ∈ ( 𝑟 RingHom 𝑍 ) → ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 33 | 30 32 | biimtrdi | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 35 | ffn | ⊢ ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ℎ Fn ( Base ‘ 𝑟 ) ) | |
| 36 | 35 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) → ℎ Fn ( Base ‘ 𝑟 ) ) |
| 37 | fvex | ⊢ ( 0g ‘ 𝑍 ) ∈ V | |
| 38 | 37 15 | fnmpti | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) Fn ( Base ‘ 𝑟 ) |
| 39 | 38 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) Fn ( Base ‘ 𝑟 ) ) |
| 40 | 31 14 | 0ringbas | ⊢ ( 𝑍 ∈ ( Ring ∖ NzRing ) → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
| 41 | 3 40 | syl | ⊢ ( 𝜑 → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
| 43 | 42 | feq3d | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ↔ ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) } ) ) |
| 44 | fvconst | ⊢ ( ( ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) } ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) | |
| 45 | 44 | ex | ⊢ ( ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) } → ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) ) |
| 46 | 43 45 | biimtrdi | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) ) ) |
| 48 | 47 | imp31 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
| 49 | eqidd | ⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) | |
| 50 | eqidd | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑟 ) ∧ 𝑥 = 𝑎 ) → ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) ) | |
| 51 | id | ⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → 𝑎 ∈ ( Base ‘ 𝑟 ) ) | |
| 52 | 37 | a1i | ⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( 0g ‘ 𝑍 ) ∈ V ) |
| 53 | 49 50 51 52 | fvmptd | ⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
| 54 | 53 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
| 55 | 48 54 | eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ℎ ‘ 𝑎 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ‘ 𝑎 ) ) |
| 56 | 36 39 55 | eqfnfvd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) |
| 57 | 56 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) |
| 58 | 34 57 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) |
| 59 | 58 | alrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) |
| 60 | 18 29 59 | 3jca | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) ) |
| 61 | 17 60 | mpdan | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) ) |
| 62 | eleq1 | ⊢ ( ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) | |
| 63 | 62 | eqeu | ⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) → ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 64 | 61 63 | syl | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 65 | 64 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 66 | 2 | ringccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 67 | 1 66 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 68 | 5 20 67 24 | istermo | ⊢ ( 𝜑 → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) ↔ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) |
| 69 | 65 68 | mpbird | ⊢ ( 𝜑 → 𝑍 ∈ ( TermO ‘ 𝐶 ) ) |