This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in Adamek p. 103. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nzerooringczr.u | |- ( ph -> U e. V ) |
|
| nzerooringczr.c | |- C = ( RingCat ` U ) |
||
| nzerooringczr.z | |- ( ph -> Z e. ( Ring \ NzRing ) ) |
||
| nzerooringczr.e | |- ( ph -> Z e. U ) |
||
| nzerooringczr.i | |- ( ph -> ZZring e. U ) |
||
| Assertion | nzerooringczr | |- ( ph -> ( ZeroO ` C ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nzerooringczr.u | |- ( ph -> U e. V ) |
|
| 2 | nzerooringczr.c | |- C = ( RingCat ` U ) |
|
| 3 | nzerooringczr.z | |- ( ph -> Z e. ( Ring \ NzRing ) ) |
|
| 4 | nzerooringczr.e | |- ( ph -> Z e. U ) |
|
| 5 | nzerooringczr.i | |- ( ph -> ZZring e. U ) |
|
| 6 | ax-1 | |- ( ( ZeroO ` C ) = (/) -> ( ph -> ( ZeroO ` C ) = (/) ) ) |
|
| 7 | neq0 | |- ( -. ( ZeroO ` C ) = (/) <-> E. h h e. ( ZeroO ` C ) ) |
|
| 8 | 2 | ringccat | |- ( U e. V -> C e. Cat ) |
| 9 | 1 8 | syl | |- ( ph -> C e. Cat ) |
| 10 | iszeroi | |- ( ( C e. Cat /\ h e. ( ZeroO ` C ) ) -> ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) ) |
|
| 11 | 9 10 | sylan | |- ( ( ph /\ h e. ( ZeroO ` C ) ) -> ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) ) |
| 12 | 1 2 3 4 | zrtermoringc | |- ( ph -> Z e. ( TermO ` C ) ) |
| 13 | 1 5 2 | irinitoringc | |- ( ph -> ZZring e. ( InitO ` C ) ) |
| 14 | 9 | ad2antrr | |- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> C e. Cat ) |
| 15 | simplr | |- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> h e. ( InitO ` C ) ) |
|
| 16 | simpr | |- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> ZZring e. ( InitO ` C ) ) |
|
| 17 | 14 15 16 | initoeu1w | |- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> h ( ~=c ` C ) ZZring ) |
| 18 | 9 | ad2antrr | |- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> C e. Cat ) |
| 19 | simpr | |- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> Z e. ( TermO ` C ) ) |
|
| 20 | simplr | |- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> h e. ( TermO ` C ) ) |
|
| 21 | 18 19 20 | termoeu1w | |- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> Z ( ~=c ` C ) h ) |
| 22 | cictr | |- ( ( C e. Cat /\ Z ( ~=c ` C ) h /\ h ( ~=c ` C ) ZZring ) -> Z ( ~=c ` C ) ZZring ) |
|
| 23 | 9 22 | syl3an1 | |- ( ( ph /\ Z ( ~=c ` C ) h /\ h ( ~=c ` C ) ZZring ) -> Z ( ~=c ` C ) ZZring ) |
| 24 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 25 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 26 | 3 | eldifad | |- ( ph -> Z e. Ring ) |
| 27 | 4 26 | elind | |- ( ph -> Z e. ( U i^i Ring ) ) |
| 28 | 2 25 1 | ringcbas | |- ( ph -> ( Base ` C ) = ( U i^i Ring ) ) |
| 29 | 27 28 | eleqtrrd | |- ( ph -> Z e. ( Base ` C ) ) |
| 30 | zringring | |- ZZring e. Ring |
|
| 31 | 30 | a1i | |- ( ph -> ZZring e. Ring ) |
| 32 | 5 31 | elind | |- ( ph -> ZZring e. ( U i^i Ring ) ) |
| 33 | 32 28 | eleqtrrd | |- ( ph -> ZZring e. ( Base ` C ) ) |
| 34 | 24 25 9 29 33 | cic | |- ( ph -> ( Z ( ~=c ` C ) ZZring <-> E. f f e. ( Z ( Iso ` C ) ZZring ) ) ) |
| 35 | n0 | |- ( ( Z ( Iso ` C ) ZZring ) =/= (/) <-> E. f f e. ( Z ( Iso ` C ) ZZring ) ) |
|
| 36 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 37 | 25 36 24 9 29 33 | isohom | |- ( ph -> ( Z ( Iso ` C ) ZZring ) C_ ( Z ( Hom ` C ) ZZring ) ) |
| 38 | ssn0 | |- ( ( ( Z ( Iso ` C ) ZZring ) C_ ( Z ( Hom ` C ) ZZring ) /\ ( Z ( Iso ` C ) ZZring ) =/= (/) ) -> ( Z ( Hom ` C ) ZZring ) =/= (/) ) |
|
| 39 | 2 25 1 36 29 33 | ringchom | |- ( ph -> ( Z ( Hom ` C ) ZZring ) = ( Z RingHom ZZring ) ) |
| 40 | 39 | neeq1d | |- ( ph -> ( ( Z ( Hom ` C ) ZZring ) =/= (/) <-> ( Z RingHom ZZring ) =/= (/) ) ) |
| 41 | zringnzr | |- ZZring e. NzRing |
|
| 42 | nrhmzr | |- ( ( Z e. ( Ring \ NzRing ) /\ ZZring e. NzRing ) -> ( Z RingHom ZZring ) = (/) ) |
|
| 43 | 3 41 42 | sylancl | |- ( ph -> ( Z RingHom ZZring ) = (/) ) |
| 44 | eqneqall | |- ( ( Z RingHom ZZring ) = (/) -> ( ( Z RingHom ZZring ) =/= (/) -> ( ZeroO ` C ) = (/) ) ) |
|
| 45 | 43 44 | syl | |- ( ph -> ( ( Z RingHom ZZring ) =/= (/) -> ( ZeroO ` C ) = (/) ) ) |
| 46 | 40 45 | sylbid | |- ( ph -> ( ( Z ( Hom ` C ) ZZring ) =/= (/) -> ( ZeroO ` C ) = (/) ) ) |
| 47 | 38 46 | syl5com | |- ( ( ( Z ( Iso ` C ) ZZring ) C_ ( Z ( Hom ` C ) ZZring ) /\ ( Z ( Iso ` C ) ZZring ) =/= (/) ) -> ( ph -> ( ZeroO ` C ) = (/) ) ) |
| 48 | 47 | expcom | |- ( ( Z ( Iso ` C ) ZZring ) =/= (/) -> ( ( Z ( Iso ` C ) ZZring ) C_ ( Z ( Hom ` C ) ZZring ) -> ( ph -> ( ZeroO ` C ) = (/) ) ) ) |
| 49 | 48 | com13 | |- ( ph -> ( ( Z ( Iso ` C ) ZZring ) C_ ( Z ( Hom ` C ) ZZring ) -> ( ( Z ( Iso ` C ) ZZring ) =/= (/) -> ( ZeroO ` C ) = (/) ) ) ) |
| 50 | 37 49 | mpd | |- ( ph -> ( ( Z ( Iso ` C ) ZZring ) =/= (/) -> ( ZeroO ` C ) = (/) ) ) |
| 51 | 35 50 | biimtrrid | |- ( ph -> ( E. f f e. ( Z ( Iso ` C ) ZZring ) -> ( ZeroO ` C ) = (/) ) ) |
| 52 | 34 51 | sylbid | |- ( ph -> ( Z ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) |
| 53 | 52 | 3ad2ant1 | |- ( ( ph /\ Z ( ~=c ` C ) h /\ h ( ~=c ` C ) ZZring ) -> ( Z ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) |
| 54 | 23 53 | mpd | |- ( ( ph /\ Z ( ~=c ` C ) h /\ h ( ~=c ` C ) ZZring ) -> ( ZeroO ` C ) = (/) ) |
| 55 | 54 | 3exp | |- ( ph -> ( Z ( ~=c ` C ) h -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) |
| 56 | 55 | a1dd | |- ( ph -> ( Z ( ~=c ` C ) h -> ( h e. ( Base ` C ) -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) ) |
| 57 | 56 | ad2antrr | |- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> ( Z ( ~=c ` C ) h -> ( h e. ( Base ` C ) -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) ) |
| 58 | 21 57 | mpd | |- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> ( h e. ( Base ` C ) -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) |
| 59 | 58 | exp31 | |- ( ph -> ( h e. ( TermO ` C ) -> ( Z e. ( TermO ` C ) -> ( h e. ( Base ` C ) -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
| 60 | 59 | com34 | |- ( ph -> ( h e. ( TermO ` C ) -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
| 61 | 60 | com25 | |- ( ph -> ( h ( ~=c ` C ) ZZring -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( h e. ( TermO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
| 62 | 61 | ad2antrr | |- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> ( h ( ~=c ` C ) ZZring -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( h e. ( TermO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
| 63 | 17 62 | mpd | |- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( h e. ( TermO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) |
| 64 | 63 | ex | |- ( ( ph /\ h e. ( InitO ` C ) ) -> ( ZZring e. ( InitO ` C ) -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( h e. ( TermO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
| 65 | 64 | com25 | |- ( ( ph /\ h e. ( InitO ` C ) ) -> ( h e. ( TermO ` C ) -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( ZZring e. ( InitO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
| 66 | 65 | expimpd | |- ( ph -> ( ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( ZZring e. ( InitO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
| 67 | 66 | com23 | |- ( ph -> ( h e. ( Base ` C ) -> ( ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) -> ( Z e. ( TermO ` C ) -> ( ZZring e. ( InitO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
| 68 | 67 | impd | |- ( ph -> ( ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) -> ( Z e. ( TermO ` C ) -> ( ZZring e. ( InitO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) |
| 69 | 68 | com24 | |- ( ph -> ( ZZring e. ( InitO ` C ) -> ( Z e. ( TermO ` C ) -> ( ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) -> ( ZeroO ` C ) = (/) ) ) ) ) |
| 70 | 13 69 | mpd | |- ( ph -> ( Z e. ( TermO ` C ) -> ( ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) -> ( ZeroO ` C ) = (/) ) ) ) |
| 71 | 12 70 | mpd | |- ( ph -> ( ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) -> ( ZeroO ` C ) = (/) ) ) |
| 72 | 71 | adantr | |- ( ( ph /\ h e. ( ZeroO ` C ) ) -> ( ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) -> ( ZeroO ` C ) = (/) ) ) |
| 73 | 11 72 | mpd | |- ( ( ph /\ h e. ( ZeroO ` C ) ) -> ( ZeroO ` C ) = (/) ) |
| 74 | 73 | expcom | |- ( h e. ( ZeroO ` C ) -> ( ph -> ( ZeroO ` C ) = (/) ) ) |
| 75 | 74 | exlimiv | |- ( E. h h e. ( ZeroO ` C ) -> ( ph -> ( ZeroO ` C ) = (/) ) ) |
| 76 | 7 75 | sylbi | |- ( -. ( ZeroO ` C ) = (/) -> ( ph -> ( ZeroO ` C ) = (/) ) ) |
| 77 | 6 76 | pm2.61i | |- ( ph -> ( ZeroO ` C ) = (/) ) |