This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Initial objects are essentially unique (weak form), i.e. if A and B are initial objects, then A and B are isomorphic. Proposition 7.3 (1) of Adamek p. 102. (Contributed by AV, 6-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initoeu1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| initoeu1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) | ||
| initoeu1.b | ⊢ ( 𝜑 → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) | ||
| Assertion | initoeu1w | ⊢ ( 𝜑 → 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoeu1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | initoeu1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) | |
| 3 | initoeu1.b | ⊢ ( 𝜑 → 𝐵 ∈ ( InitO ‘ 𝐶 ) ) | |
| 4 | 1 2 3 | initoeu1 | ⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
| 5 | euex | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
| 7 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 9 | initoo | ⊢ ( 𝐶 ∈ Cat → ( 𝐴 ∈ ( InitO ‘ 𝐶 ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) | |
| 10 | 1 2 9 | sylc | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
| 11 | initoo | ⊢ ( 𝐶 ∈ Cat → ( 𝐵 ∈ ( InitO ‘ 𝐶 ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) | |
| 12 | 1 3 11 | sylc | ⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
| 13 | 7 8 1 10 12 | cic | ⊢ ( 𝜑 → ( 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
| 14 | 6 13 | mpbird | ⊢ ( 𝜑 → 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) |