This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of Adamek p. 101 , and example in Lang p. 58. (Contributed by AV, 3-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irinitoringc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| irinitoringc.z | ⊢ ( 𝜑 → ℤring ∈ 𝑈 ) | ||
| irinitoringc.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | ||
| Assertion | irinitoringc | ⊢ ( 𝜑 → ℤring ∈ ( InitO ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irinitoringc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | irinitoringc.z | ⊢ ( 𝜑 → ℤring ∈ 𝑈 ) | |
| 3 | irinitoringc.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 4 | zex | ⊢ ℤ ∈ V | |
| 5 | 4 | mptex | ⊢ ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) ∈ V |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 8 | 3 6 1 7 | ringchomfval | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RingHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( Hom ‘ 𝐶 ) = ( RingHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 10 | 9 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = ( ℤring ( RingHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) 𝑟 ) ) |
| 11 | id | ⊢ ( ℤring ∈ 𝑈 → ℤring ∈ 𝑈 ) | |
| 12 | zringring | ⊢ ℤring ∈ Ring | |
| 13 | 12 | a1i | ⊢ ( ℤring ∈ 𝑈 → ℤring ∈ Ring ) |
| 14 | 11 13 | elind | ⊢ ( ℤring ∈ 𝑈 → ℤring ∈ ( 𝑈 ∩ Ring ) ) |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → ℤring ∈ ( 𝑈 ∩ Ring ) ) |
| 16 | 3 6 1 | ringcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) ) |
| 17 | 15 16 | eleqtrrd | ⊢ ( 𝜑 → ℤring ∈ ( Base ‘ 𝐶 ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ℤring ∈ ( Base ‘ 𝐶 ) ) |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ ( Base ‘ 𝐶 ) ) | |
| 20 | 18 19 | ovresd | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℤring ( RingHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) 𝑟 ) = ( ℤring RingHom 𝑟 ) ) |
| 21 | 16 | eleq2d | ⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) ↔ 𝑟 ∈ ( 𝑈 ∩ Ring ) ) ) |
| 22 | elin | ⊢ ( 𝑟 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Ring ) ) | |
| 23 | 22 | simprbi | ⊢ ( 𝑟 ∈ ( 𝑈 ∩ Ring ) → 𝑟 ∈ Ring ) |
| 24 | 21 23 | biimtrdi | ⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) → 𝑟 ∈ Ring ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ Ring ) |
| 26 | eqid | ⊢ ( .g ‘ 𝑟 ) = ( .g ‘ 𝑟 ) | |
| 27 | eqid | ⊢ ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) = ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) | |
| 28 | eqid | ⊢ ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑟 ) | |
| 29 | 26 27 28 | mulgrhm2 | ⊢ ( 𝑟 ∈ Ring → ( ℤring RingHom 𝑟 ) = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) |
| 30 | 25 29 | syl | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℤring RingHom 𝑟 ) = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) |
| 31 | 10 20 30 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) |
| 32 | sneq | ⊢ ( 𝑓 = ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) → { 𝑓 } = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) | |
| 33 | 32 | eqeq2d | ⊢ ( 𝑓 = ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) → ( ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { 𝑓 } ↔ ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) ) |
| 34 | 33 | spcegv | ⊢ ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) ∈ V → ( ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } → ∃ 𝑓 ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { 𝑓 } ) ) |
| 35 | 5 31 34 | mpsyl | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ∃ 𝑓 ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { 𝑓 } ) |
| 36 | eusn | ⊢ ( ∃! 𝑓 𝑓 ∈ ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) ↔ ∃ 𝑓 ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { 𝑓 } ) | |
| 37 | 35 36 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ∃! 𝑓 𝑓 ∈ ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) ) |
| 38 | 37 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) ) |
| 39 | 3 | ringccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 40 | 1 39 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 41 | 12 | a1i | ⊢ ( 𝜑 → ℤring ∈ Ring ) |
| 42 | 2 41 | elind | ⊢ ( 𝜑 → ℤring ∈ ( 𝑈 ∩ Ring ) ) |
| 43 | 42 16 | eleqtrrd | ⊢ ( 𝜑 → ℤring ∈ ( Base ‘ 𝐶 ) ) |
| 44 | 6 7 40 43 | isinito | ⊢ ( 𝜑 → ( ℤring ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
| 45 | 38 44 | mpbird | ⊢ ( 𝜑 → ℤring ∈ ( InitO ‘ 𝐶 ) ) |