This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed division ring is a topological division ring. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrgtdrg | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ TopDRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrgtrg | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopRing ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ TopRing ) |
| 3 | simpr | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ DivRing ) | |
| 4 | nrgring | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ Ring ) |
| 6 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) | |
| 8 | 6 7 | unitgrp | ⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ Grp ) |
| 9 | 5 8 | syl | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ Grp ) |
| 10 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 11 | 10 | trgtmd | ⊢ ( 𝑅 ∈ TopRing → ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) |
| 12 | 2 11 | syl | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) |
| 13 | 6 10 | unitsubm | ⊢ ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 14 | 5 13 | syl | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( Unit ‘ 𝑅 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 15 | 7 | submtmd | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ TopMnd ∧ ( Unit ‘ 𝑅 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopMnd ) |
| 16 | 12 14 15 | syl2anc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopMnd ) |
| 17 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 18 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 19 | eqid | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) | |
| 20 | 17 6 18 19 | nrginvrcn | ⊢ ( 𝑅 ∈ NrmRing → ( invr ‘ 𝑅 ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) Cn ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( invr ‘ 𝑅 ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) Cn ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) ) ) |
| 22 | 10 19 | mgptopn | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( mulGrp ‘ 𝑅 ) ) |
| 23 | 7 22 | resstopn | ⊢ ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) = ( TopOpen ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ) |
| 24 | 6 7 18 | invrfval | ⊢ ( invr ‘ 𝑅 ) = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ) |
| 25 | 23 24 | istgp | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ↔ ( ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ Grp ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopMnd ∧ ( invr ‘ 𝑅 ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) Cn ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) ) ) ) |
| 26 | 9 16 21 25 | syl3anbrc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) |
| 27 | 10 6 | istdrg | ⊢ ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) ) |
| 28 | 2 3 26 27 | syl3anbrc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ TopDRing ) |