This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed division ring is a topological division ring. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrgtdrg | |- ( ( R e. NrmRing /\ R e. DivRing ) -> R e. TopDRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrgtrg | |- ( R e. NrmRing -> R e. TopRing ) |
|
| 2 | 1 | adantr | |- ( ( R e. NrmRing /\ R e. DivRing ) -> R e. TopRing ) |
| 3 | simpr | |- ( ( R e. NrmRing /\ R e. DivRing ) -> R e. DivRing ) |
|
| 4 | nrgring | |- ( R e. NrmRing -> R e. Ring ) |
|
| 5 | 4 | adantr | |- ( ( R e. NrmRing /\ R e. DivRing ) -> R e. Ring ) |
| 6 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 7 | eqid | |- ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) |
|
| 8 | 6 7 | unitgrp | |- ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) |
| 9 | 5 8 | syl | |- ( ( R e. NrmRing /\ R e. DivRing ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) |
| 10 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 11 | 10 | trgtmd | |- ( R e. TopRing -> ( mulGrp ` R ) e. TopMnd ) |
| 12 | 2 11 | syl | |- ( ( R e. NrmRing /\ R e. DivRing ) -> ( mulGrp ` R ) e. TopMnd ) |
| 13 | 6 10 | unitsubm | |- ( R e. Ring -> ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 14 | 5 13 | syl | |- ( ( R e. NrmRing /\ R e. DivRing ) -> ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 15 | 7 | submtmd | |- ( ( ( mulGrp ` R ) e. TopMnd /\ ( Unit ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopMnd ) |
| 16 | 12 14 15 | syl2anc | |- ( ( R e. NrmRing /\ R e. DivRing ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopMnd ) |
| 17 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 18 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 19 | eqid | |- ( TopOpen ` R ) = ( TopOpen ` R ) |
|
| 20 | 17 6 18 19 | nrginvrcn | |- ( R e. NrmRing -> ( invr ` R ) e. ( ( ( TopOpen ` R ) |`t ( Unit ` R ) ) Cn ( ( TopOpen ` R ) |`t ( Unit ` R ) ) ) ) |
| 21 | 20 | adantr | |- ( ( R e. NrmRing /\ R e. DivRing ) -> ( invr ` R ) e. ( ( ( TopOpen ` R ) |`t ( Unit ` R ) ) Cn ( ( TopOpen ` R ) |`t ( Unit ` R ) ) ) ) |
| 22 | 10 19 | mgptopn | |- ( TopOpen ` R ) = ( TopOpen ` ( mulGrp ` R ) ) |
| 23 | 7 22 | resstopn | |- ( ( TopOpen ` R ) |`t ( Unit ` R ) ) = ( TopOpen ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) |
| 24 | 6 7 18 | invrfval | |- ( invr ` R ) = ( invg ` ( ( mulGrp ` R ) |`s ( Unit ` R ) ) ) |
| 25 | 23 24 | istgp | |- ( ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopGrp <-> ( ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp /\ ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopMnd /\ ( invr ` R ) e. ( ( ( TopOpen ` R ) |`t ( Unit ` R ) ) Cn ( ( TopOpen ` R ) |`t ( Unit ` R ) ) ) ) ) |
| 26 | 9 16 21 25 | syl3anbrc | |- ( ( R e. NrmRing /\ R e. DivRing ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopGrp ) |
| 27 | 10 6 | istdrg | |- ( R e. TopDRing <-> ( R e. TopRing /\ R e. DivRing /\ ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. TopGrp ) ) |
| 28 | 2 3 26 27 | syl3anbrc | |- ( ( R e. NrmRing /\ R e. DivRing ) -> R e. TopDRing ) |