This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015) (Proof shortened by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrgtrg | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrgtgp | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp ) | |
| 2 | nrgring | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) | |
| 3 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 4 | 3 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 5 | 2 4 | syl | ⊢ ( 𝑅 ∈ NrmRing → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 6 | tgptps | ⊢ ( 𝑅 ∈ TopGrp → 𝑅 ∈ TopSp ) | |
| 7 | 1 6 | syl | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopSp ) |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) | |
| 10 | 8 9 | istps | ⊢ ( 𝑅 ∈ TopSp ↔ ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 11 | 7 10 | sylib | ⊢ ( 𝑅 ∈ NrmRing → ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 12 | 3 8 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 13 | 3 9 | mgptopn | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( mulGrp ‘ 𝑅 ) ) |
| 14 | 12 13 | istps | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ TopSp ↔ ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 15 | 11 14 | sylibr | ⊢ ( 𝑅 ∈ NrmRing → ( mulGrp ‘ 𝑅 ) ∈ TopSp ) |
| 16 | rlmnlm | ⊢ ( 𝑅 ∈ NrmRing → ( ringLMod ‘ 𝑅 ) ∈ NrmMod ) | |
| 17 | rlmsca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 18 | rlmscaf | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 19 | rlmtopn | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 20 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 21 | 20 8 | strfvi | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 22 | 21 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) ) |
| 23 | tsetid | ⊢ TopSet = Slot ( TopSet ‘ ndx ) | |
| 24 | eqid | ⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑅 ) | |
| 25 | 23 24 | strfvi | ⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ ( I ‘ 𝑅 ) ) |
| 26 | 25 | a1i | ⊢ ( ⊤ → ( TopSet ‘ 𝑅 ) = ( TopSet ‘ ( I ‘ 𝑅 ) ) ) |
| 27 | 22 26 | topnpropd | ⊢ ( ⊤ → ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( I ‘ 𝑅 ) ) ) |
| 28 | 27 | mptru | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( I ‘ 𝑅 ) ) |
| 29 | 17 18 19 28 | nlmvscn | ⊢ ( ( ringLMod ‘ 𝑅 ) ∈ NrmMod → ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ×t ( TopOpen ‘ 𝑅 ) ) Cn ( TopOpen ‘ 𝑅 ) ) ) |
| 30 | 16 29 | syl | ⊢ ( 𝑅 ∈ NrmRing → ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ×t ( TopOpen ‘ 𝑅 ) ) Cn ( TopOpen ‘ 𝑅 ) ) ) |
| 31 | eqid | ⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 32 | 31 13 | istmd | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ TopMnd ↔ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑅 ) ∈ TopSp ∧ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ×t ( TopOpen ‘ 𝑅 ) ) Cn ( TopOpen ‘ 𝑅 ) ) ) ) |
| 33 | 5 15 30 32 | syl3anbrc | ⊢ ( 𝑅 ∈ NrmRing → ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) |
| 34 | 3 | istrg | ⊢ ( 𝑅 ∈ TopRing ↔ ( 𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) ) |
| 35 | 1 2 33 34 | syl3anbrc | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopRing ) |