This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed module is a topological module. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlmtlm | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 2 | nlmlmod | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) | |
| 3 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ Abel ) |
| 5 | ngptgp | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ Abel ) → 𝑊 ∈ TopGrp ) | |
| 6 | 1 4 5 | syl2anc | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopGrp ) |
| 7 | tgptmd | ⊢ ( 𝑊 ∈ TopGrp → 𝑊 ∈ TopMnd ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopMnd ) |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 10 | 9 | nlmnrg | ⊢ ( 𝑊 ∈ NrmMod → ( Scalar ‘ 𝑊 ) ∈ NrmRing ) |
| 11 | nrgtrg | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ NrmRing → ( Scalar ‘ 𝑊 ) ∈ TopRing ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑊 ∈ NrmMod → ( Scalar ‘ 𝑊 ) ∈ TopRing ) |
| 13 | 8 2 12 | 3jca | ⊢ ( 𝑊 ∈ NrmMod → ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopRing ) ) |
| 14 | eqid | ⊢ ( ·sf ‘ 𝑊 ) = ( ·sf ‘ 𝑊 ) | |
| 15 | eqid | ⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) | |
| 16 | eqid | ⊢ ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) = ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) | |
| 17 | 9 14 15 16 | nlmvscn | ⊢ ( 𝑊 ∈ NrmMod → ( ·sf ‘ 𝑊 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ×t ( TopOpen ‘ 𝑊 ) ) Cn ( TopOpen ‘ 𝑊 ) ) ) |
| 18 | 14 15 9 16 | istlm | ⊢ ( 𝑊 ∈ TopMod ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopRing ) ∧ ( ·sf ‘ 𝑊 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ×t ( TopOpen ‘ 𝑊 ) ) Cn ( TopOpen ‘ 𝑊 ) ) ) ) |
| 19 | 13 17 18 | sylanbrc | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopMod ) |